Документ подписан простой электронной подписью Информация о владельце:

ФИО: Агафомини Стрествочна УКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Должно ФЕДЕРАДИИОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ Дата подписания: 18.06.2025 15:38:02

ВЫСШЕГО ОБРАЗОВАНИЯ

Уникальный программный ключ«МОСКОВСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

<u>Кафедра Информационных технологий, электроэнергетики</u> <u>и систем управления</u>

УТВЕРЖДАЮ Директор филиала «26» мая 2022г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

«Микропроцессорные системы в энергетике»

(наименование дисциплины)

Направление	13.03.02 «Электроэнергетика и электротехника»
подготовки	13.03.02 «Электроэнергетика и электротехника»
	(код и наименование направления подготовки)
Направленность	
(профиль)	«Электроснабжение»
подготовки	
	(наименование профиля подготовки)
Квалификация	
выпускника	бакалавр
Форма обучения	очная, заочная

Рабочая программа дисциплины разработана в соответствии с:

Федеральным государственным образовательным стандартом высшего образования - бакалавриат по направлению подготовки 13.03.02 − Электроэнергетика и электротехника, утвержденный приказом Министерства науки и высшего образования Российской Федерации № 144 от 28 февраля 2018 г. зарегистрированный в Минюсте 22 марта 2018 года, рег. номер 50467 (далее – ФГОС ВО).

- учебным планом (очной, заочной форм обучения) по направлению подготовки 13.03.02 «Электроэнергетика и электротехника».

Рабочая программ дисциплины включает в себя оценочные материалы для проведения текущего контроля успеваемости и промежуточной аттестации по дисциплине (п.8 Фонд оценочных средств для проведения текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины)

Автор <u>Барданов С.А., ст. преподаватель кафедры ИТЭСУ</u> (указать Φ ИО, ученую степень, ученое звание или должность)

Программа одобрена на заседании кафедры ИТЭСУ (протокол № 10 от 14.05.2022).

- 1. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения образовательной программы (Цели освоения дисциплины)
- 1.1. Целями освоения дисциплины «Микропроцессорные системы в энергетике» являются: теоретическая и практическая подготовка будущих бакалавров в области электроэнергетики агропромышленного комплекса

Задачами освоения дисциплины «Микропроцессорные системы в энергетике» являются:

- 1.2. Области профессиональной деятельности и(или) сферы профессиональной деятельности, в которых выпускники, освоившие программу, могут осуществлять профессиональную деятельность:
 - 16 Строительство и жилищно-коммунальное хозяйство;
 - 20 Электроэнергетика.
- 1.3. К основным задачам изучения дисциплины относится подготовка обучающихся к выполнению трудовых функций в соответствии с профессиональными стандартами:

Наименование профессиональных стандартов (ПС)	Код, наименование и уровень квалификации ОТФ, на которые ориентирована дисциплина	Код и наименование трудовых функций, на которые ориентирована дисциплина
"Специалист по эксплуатации трансформаторных подстанций и распределительных пунктов", утвержденный приказом Министерства труда и социальной защиты Российской Федерации от 17 апреля 2014г. №266н (зарегистрирован Министерством юстиции Российской Федерации 11 июля 2014г, регистрационный №33064), с изменением, внесенным приказом Министерства труда и социальной защиты Российской Федерации от 12 декабря 2016 г. N727н (зарегистрирован Министерством юстиции Российской Федерации 13 января 2017г., Регистрационный №5230)	В, Руководство структурным подразделением по техническому обслуживанию и ремонту трансформаторных подстанций и распределительных пунктов, 6	В/01.6 Организационнотехническое, технологическое и ресурсное обеспечение работ по эксплуатации трансформаторных подстанци й и распределительных пунктов В/02.6 Планирование и контроль деятельности по эксплуатации трансформаторных подстанций и распределительных пунктов В/03.6 Координация деятельности персонала, осуществляющего техническое обслуживание и ремонт трансформаторных подстанций и распределительных пунктов

Наименование профессиональных стандартов (ПС)	Код, наименование и уровень квалификации ОТФ, на которые ориентирована дисциплина	Код и наименование трудовых функций, на которые ориентирована дисциплина	
20.041 «Работник по оперативнотехнологическому управлению в электрических сетях», утвержденный приказом Министерства труда и социальной защиты РФ от 14 мая 2019 г. №327н	D Управление технологическим режимом работы электрической сети, 5	D/01.5 Производство оперативных переключений D/04.5 Предупреждение, предотвращение развития нарушения нормального режима работы электрической сети	
(зарегистрирован Министерством юстиции Российской Федерации 16 июля 2019г., регистрационный №55292)	Е Организация деятельности по оперативно-технологическому управлению в рамках смены, 6	Е/02.6 Организация и контроль выполнения функций по оперативно-технологическому управлению	

1.4. Компетенции обучающегося, формируемые в результате освоения лиспиплины

дисциплины			
Наименование категории (группы) компетенций	Код и наименование компетенций	Код и наименование индикатора достижения компетенции	Перечень планируемых результатов обучения
Информационная культура	ОПК-2 Способен разрабатывать алгоритмы и компьютерные программы, пригодные для практического применения	ОПК-2.1 Автоматизирует решение задач и реализует алгоритмы с использованием программных средств	Знать: основные электроэнергетические объекты, для которых актуально применение микропроцессорных систем управления (МСУ); функциональные и структурные схемы объектов и систем. Уметь: составлять функциональные и структурные схемы управления различными электроэнергетическими объектами. Владеть: методами использования средств технической реализации микропроцессорных систем управления на основе ПЛК широкого применения.
		ОПК-2.2 Способен	Знать: принципы цифровой обработки информации;

Наименование категории (группы) компетенций	Код и наименование компетенций	Код и наименование индикатора достижения компетенции	Перечень планируемых результатов обучения
		разрабатывать компоненты программно- аппаратных комплексов и баз данных	принципы построения микропроцессорных устройств обработки информации и программируемых логических контроллеров; Уметь: составлять функциональные и структурные схемы управления по типовым конфигурациям микропроцессорных систем управления и систем обработки данных, применяемых на электроэнергетических объектах. Владеть: навыками выбирать средства технической реализации микропроцессорных систем управления.
		ОПК-2.3 Способен разрабатывать клиентские приложения к базам данных	Знать: структуру и принципы организации программного обеспечения микропроцессорных устройств обработки информации и программируемых логических контроллеров. Уметь: составлять функциональные и структурные схемы управления различными электроэнергетическими объектами. Владеть: программированием микропроцессорных систем управления на основе ПЛК широкого применения.

2. Место дисциплины в структуре ОПОП

Дисциплина Б1.Д(М).В.19 «Микропроцессорные системы в энергетике» реализуется в рамках Блока «Элективные дисциплины (модуля)» программы бакалавриата.

Дисциплина преподается обучающимся по очной форме обучения – в 5-м семестре, по заочной форме – в 8-м семестре.

Дисциплина «Микропроцессорные системы в энергетике» является финальным этапом формирования компетенций ОПК-2 в процессе освоения ОПОП.

Дисциплина «Микропроцессорные системы в энергетике» основывается на знаниях, умениях и навыках, приобретенных при изучении дисциплин: компьютерная графика при проектировании, компьютерное моделирование процессов электроэнергетики.

Формой промежуточной аттестации знаний обучаемых по очной форме обучения является экзамен в 5-м семестре, по заочной форме зачет в 8-м семестре.

3. Объем дисциплины

Общая трудоемкость дисциплины составляет <u>4 зачетных единицы</u> (<u>144</u> <u>академических часа</u>), в том числе

очная форма обучения:

Семестр	5
лекции	16
лабораторные занятия	32
семинары и практические занятия	-
контроль: контактная работа	0,3
контроль: самостоятельная работа	35,7
расчетно-графические работы, курсовые работы (проекты): контактная работа	-
расчетно-графические работы, курсовые работы (проекты): самостоятельная работа	-
консультации	1
Контактная работа	49,3
Самостоятельная работа	94,7

Вид промежуточной аттестации (форма контроля): экзамен

заочная форма обучения:

Семестр	9
лекции	4
лабораторные занятия	8
семинары и практические занятия	-
контроль: контактная работа	0,3
контроль: самостоятельная работа	35,7
расчетно-графические работы, курсовые работы (проекты): контактная работа	-
расчетно-графические работы, курсовые работы (проекты): самостоятельная работа	-
консультации	1
Контактная работа	13,3
Самостоятельная работа	130,7

Вид промежуточной аттестации (форма контроля): экзамен

4. Содержание дисциплины, структурированное по темам (разделам) Очная форма обучения

		Количество часов			Код
Тема (раздел)		контактная работа			индикатора
тема (раздел)	лекции	лабораторные занятия	семинары и практические занятия	самостоятельная работа	достижений компетенции
Тема 1. Типовые узлы и устройства микропроцессоров и микро ЭВМ (Сумматоры, мультиплексоры, демультиплексоры.)	4	4		14	ОПК-2.1 ОПК-2.2 ОПК-2.3
Тема 2. Типовые узлы и устройства микропроцессоров и микро ЭВМ (Регистры, счетчики импульсов, запоминающие устройства)	4	4		15	ОПК-2.1 ОПК-2.2 ОПК-2.3
Тема 3. Микропроцессорные системы управления (МСУ).	4	4		15	ОПК-2.1 ОПК-2.2 ОПК-2.3
Тема 4. Программное обеспечение.	4	4		15	ОПК-2.1 ОПК-2.2 ОПК-2.3
Консультации		1		-	
Контроль (экзамен)		0,3		35,7	
ИТОГО		49,3		94,7	

Заочная форма обучения

Sao man dobina ooy ic		Коли	Код		
Томо (порнон)		контактная работа		индикатора	
Тема (раздел)	лекци и	лабораторны е занятия	семинары и практически е занятия	самостоятельна я работа	достижений компетенции
Тема 1. Типовые узлы и					
устройства микропроцессоров и					ОПК-2.1
микро ЭВМ (Сумматоры,	1	2		23	ОПК-2.2
мультиплексоры,					ОПК-2.3
демультиплексоры.)					
Тема 2. Типовые узлы и					
устройства микропроцессоров и					ОПК-2.1
микро ЭВМ (Регистры,	1	2		25	ОПК-2.2
счетчики импульсов,					ОПК-2.3
запоминающие устройства)					
Тема 3. Микропроцессорные					ОПК-2.1
системы управления (МСУ).	2	2		23	ОПК-2.2
					ОПК-2.3
Тема 4. Программное					ОПК-2.1
обеспечение.	2	2		24	ОПК-2.2
					ОПК-2.3
Консультации		1			
Контроль (экзамен)		0,3		35,7	
ИТОГО		13,3		130,7	

5. Образовательные технологии, применяемые при освоении дисциплины

Методика преподавания дисциплины и реализация компетентностного подхода в изложении и восприятии материала предусматривает использование следующих активных и интерактивных форм проведения групповых, индивидуальных, аудиторных занятий в сочетании с внеаудиторной работой с целью формирования и развития профессиональных навыков обучающихся: рефераты, презентации, лабораторные работы.

6. Практическая подготовка

Практическая подготовка реализуется путем проведения практических занятий, предусматривающих участие обучающихся в выполнении отдельных элементов работ, связанных с будущей профессиональной деятельностью. Объем занятий в форме практической подготовки составляет 16 час. (по очной форме обучения)

Очная форма обучения

Вид занятия	Тема занятия	Количеств о часов	Форма проведения	Код индикатора достижений компетенции
Практическ ое задание1	Типовые узлы и устройства микропроцессоров и микро ЭВМ (Сумматоры, мультиплексоры, демультиплексоры.)	2	Тест, реферат	ОПК-2.1 ОПК-2.2 ОПК-2.3
Практическ ое задание 2	Типовые узлы и устройства микропроцессоров и микро ЭВМ (Регистры, счетчики импульсов, запоминающие устройства)	2	Тест, реферат	ОПК-2.1 ОПК-2.2 ОПК-2.3
Практическ ое задание 3	Микропроцессорные системы управления (МСУ).	2	Тест, реферат	ОПК-2.1 ОПК-2.2 ОПК-2.3
Практическ ое задание 4	Программное обеспечение.	2	Тест, реферат	ОПК-2.1 ОПК-2.2 ОПК-2.3

7. Учебно-методическое обеспечение самостоятельной работы студентов

Самостоятельная работа студентов предусмотрена учебным планом по дисциплине в объеме <u>94,7</u> часов по очной форме обучения, <u>128,7</u> часа по заочной форме обучения. Самостоятельная работа реализуется в рамках программы освоения дисциплины в следующих формах:

- работа с конспектом занятия (обработка текста);

- работа над учебным материалом учебника;
- проработка тематики самостоятельной работы;
- написание реферата;
- поиск информации в сети «Интернет» и литературе;
- оформление процессуальных документов;
- выполнение индивидуальных заданий;
- подготовка к сдаче экзамена.

В рамках учебного курса предусматриваются встречи с представителями правоохранительных органов.

Самостоятельная работа проводится cцелью: систематизации закрепления полученных теоретических знаний и практических умений обучающихся; углубления и расширения теоретических знаний студентов; формирования умений использовать нормативную, правовую, справочную документацию, учебную и специальную литературу; развития познавательных обучающихся: творческой способностей активности инициативы, организованности; формирование самостоятельности, ответственности, саморазвитию, самостоятельности способностей мышления, К совершенствованию и самоорганизации; формирования профессиональных компетенций; развитию исследовательских умений студентов.

Формы и виды самостоятельной работы студентов: чтение основной и дополнительной литературы – самостоятельное изучение материала по рекомендуемым литературным источникам; работа с библиотечным каталогом, самостоятельный подбор необходимой литературы; работа со справочником; поиск необходимой информации сети Интернет; В реферирование конспектирование источников; источников; аннотаций к прочитанным литературным источникам; составление рецензий и отзывов на прочитанный материал; составление обзора публикаций по теме; разработка терминологического словаря; составление составление хронологической таблицы; составление библиографии (библиографической картотеки); подготовка к различным формам текущей и промежуточной аттестации (к тестированию, контрольной работе, зачету); выполнение домашних контрольных работ; самостоятельное выполнение практических заданий репродуктивного типа (ответы на вопросы, задачи, тесты; выполнение творческих заданий).

Технология организации самостоятельной работы обучающихся включает использование информационных и материально-технических ресурсов образовательного учреждения: библиотеку с читальным залом, компьютерные классы с возможностью работы в Интернет; аудитории (классы) для консультационной деятельности.

Перед выполнением обучающимися внеаудиторной самостоятельной работы преподаватель проводит консультирование по выполнению задания, который включает цель задания, его содержания, сроки выполнения, ориентировочный объем работы, основные требования к результатам работы, критерии оценки. Во время выполнения обучающимися внеаудиторной

самостоятельной работы и при необходимости преподаватель может проводить индивидуальные и групповые консультации.

Самостоятельная работа может осуществляться индивидуально или группами обучающихся в зависимости от цели, объема, конкретной тематики самостоятельной работы, уровня сложности, уровня умений обучающихся.

Контроль самостоятельной работы студентов предусматривает: соотнесение содержания контроля с целями обучения; объективность контроля; валидность контроля (соответствие предъявляемых заданий тому, что предполагается проверить); дифференциацию контрольно-измерительных материалов.

Формы контроля самостоятельной работы: просмотр и проверка выполнения самостоятельной работы преподавателем; организация самопроверки, взаимопроверки выполненного задания в группе; обсуждение результатов выполненной работы на занятии; проведение письменного опроса; проведение устного опроса; организация и проведение индивидуального собеседования; организация и проведение собеседования с группой.

№ п/п	Вид учебно-методического обеспечения
1.	Контрольные задания (варианты).
2.	Тестовые задания.
3.	Вопросы для самоконтроля знаний.
4.	Темы докладов.
5.	Типовые задания для проведения текущего контроля успеваемости обучающихся
	(Тестовые задания, практические ситуативные задачи, тематика докладов и
	рефератов)
6.	Задания для подготовки к промежуточной аттестации по дисциплине
	(Вопросы к зачету)

8. Фонд оценочных средств для проведения текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины

8.1. Паспорт фонда оценочных средств

№	Контролируемые разделы (темы) дисциплины	Код и наименование компетенции	Индикатор достижения компетенции	Наименование оценочного средства
1.	Тема 1. Типовые узлы и	,	ОПК-2.1 Автоматизи-	Опрос, тест
	устройства	разрабатывать	рует решение задач и	реферат
	микропроцессоров и	алгоритмы и	реализует алгоритмы с	
	микро ЭВМ (Сумматоры,	компьютерные	использованием про-	
	мультиплексоры,	программы,	граммных средств	
	демультиплексоры.)	пригодные для	ОПК-2.2 Способен раз-	
		практического	рабатывать компонен-	
		применения	ты программно-аппа-	
			ратных комплексов и	
			баз данных	
			ОПК-2.3 Способен	

№	Контролируемые разделы (темы)	Код и наименование	Индикатор достижения компетенции	Наименование оценочного
	дисциплины	компетенции	разрабатывать клиентские приложения к базам данных	средства
2.	микро ЭВМ (Регистры, счетчики импульсов, запоминающие устройства)	разрабатывать алгоритмы и компьютерные программы, пригодные для практического применения	ОПК-2.1 Автоматизирует решение задач и реализует алгоритмы с использованием программных средств ОПК-2.2 Способен разрабатывать компоненты программно-аппаратных комплексов и баз данных ОПК-2.3 Способен разрабатывать клиентские приложения к базам данных	Опрос, тест реферат
3.	Тема 3. Микропроцессорные системы управления (МСУ).	ОПК-2 Способен разрабатывать алгоритмы и компьютерные программы, пригодные для практического применения	ОПК-2.1 Автоматизирует решение задач и реализует алгоритмы с использованием программных средств ОПК-2.2 Способен разрабатывать компоненты программно-аппаратных комплексов и баз данных ОПК-2.3 Способен разрабатывать клиентские приложения к базам данных	Опрос, тест реферат
4.	Тема 4. Программное обеспечение.	ОПК-2 Способен разрабатывать алгоритмы и компьютерные программы, пригодные для практического применения	рует решение задач и реализует алгоритмы с использованием программных средств ОПК-2.2 Способен разрабатывать компоненты программно-аппаратных комплексов и баз данных ОПК-2.3 Способен разрабатывать клиентские приложения к базам	Опрос, тест реферат

Этапы формирования компетенций в процессе освоения ОПОП прямо связаны с местом дисциплин в образовательной программе. Каждый этап формирования компетенции, характеризуется определенными знаниями, умениями и навыками и (или) опытом профессиональной деятельности, которые оцениваются в процессе текущего контроля успеваемости, промежуточной аттестации по дисциплине (практике) и в процессе итоговой аттестации.

Дисциплина «Микропроцессорные системы в энергетике» является финальным этапом комплекса дисциплин, в ходе изучения которых у студентов формируются компетенции ОПК-2.

Формирования компетенции ОПК-2 начинается с изучения дисциплины «Компьютерная графика при проектировании», «компьютерное моделирование процессов электроэнергетики».

Итоговая оценка сформированности компетенций ОПК-2 определяется в период подготовки и сдачи государственного экзамена.

В процессе изучения дисциплины, компетенции также формируются поэтапно.

Основными этапами формирования ОПК-2 при изучении дисциплины «Микропроцессорные системы в энергетике» является последовательное изучение содержательно связанных между собой тем учебных занятий. Изучение каждой темы предполагает овладение студентами необходимыми (составляющими) компетенций. дескрипторами Для оценки сформированности компетенций процессе изучения В дисциплины предусмотрено проведение текущего контроля успеваемости по темам (разделам) дисциплины и промежуточной аттестации по дисциплине – экзамен.

- 8.2. Контрольные задания и материалы, необходимые для оценки знаний, умений и навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы
- 8.2.1. Контрольные вопросы по темам (разделам) для опроса на занятиях

Тема (раздел)	Вопросы						
Тема 1. Типовые узлы и	1. Функционирование мультиплексора на четыре входа и один выход						
устройства	$(4\rightarrow 1)$.						
микропроцессоров и	2. Пирамидальное каскадирование мультиплексоров.						
микро ЭВМ	3. Обобщённая схема демультиплексора.						
(Сумматоры,	4. Структура демультиплексора на элементах И, реализующая уравнение						
мультиплексоры,	16 входов на 3 выхода (16→3).						
демультиплексоры.)	5. Обобщённая схема мультиплексора.						
	6. Функционирование мультиплексора на четыре входа и один выход $(4 \rightarrow 1)$.						
	7. Одноразрядный сумматор на два входа.						
	8. Одноразрядный сумматор на три входа.						
	9. Сумматор (чисел) последовательного действия.						
	10. Сумматор (чисел) параллельного действия.						
Тема 2. Типовые узлы и	1. Функциональная схема сдвигающего регистра, выполненного на						
устройства	двухтактных D-триггерах.						
микропроцессоров и	2. Схема четырёхразрядного регистра сдвига на RS-триггерах.						
микро ЭВМ (Регистры,	3. Исследование работы регистра К155ИР1						
счетсчики импульсов,	4. Общие сведения о регистрах.						
запоминающие	5. Функциональная схема приёма и передачи кода из одного регистра в						
устройства)	другой.						
устронства)	6. Какие виды счётчиков вы знаете.						
	7. Назначение, устройство и принцип действия суммирующего счётчика.						
	8. Вычитающий счётчик.						
	9. Реверсивный счётчик						
	10. Назначение, устройство, принцип действия операционного						
	запоминающего устройства. 11. Исследование работы операционного запоминающего устройства.						
Тема 3.	1. Технологии изготовления микропроцессорных систем.						
	2. Виды аналого-цифровых преобразователей и их особенности.						
Микропроцессорные	3. Основные характеристики АЦП.						
системы управления	4. Принципы построения АЦП.						
(МСУ).	5. Интегральные микросхемы АЦП.						
	6. Назначение классификация и основные параметры ЦАП.						
	7. Принципы построения ЦАП.						
	8. Серийные микросхемы ЦАП						
Така 4 Постиского	1 OSuvia aparaving a programma a sacramaning OWEN Logic						
Тема 4. Программное	 Общие сведения о программном обеспечении OWEN Logic. Создание нового проекта и сохранение его. 						
обеспечение.	3. Программы управления электродвигателем подъёмного устройства.						
	4. Установка программы. Интерфейс программы.						
	5. Управление освещением лестничных клеток при помощи						
	программируемого логического реле ONI PLR-S.						
	6. Управление секционными воротами при помощи программируемого						
	логического реле ONI PLR-S.						
	7. Управление насосной парой при помощи программируемого						
	логического реле ONI PLR-S.						
	8. Управление вытяжной вентиляцией при помощи программируемого						
	логического реле ONI PLR-S.						

Шкала оценивания ответов на вопросы

Шкала оценивания	Критерии оценивания					
«Отлично»	Обучающийся глубоко и содержательно раскрывает ответ н					
	каждый теоретический вопрос, не допустив ошибок. Ответ					

	носит развернутый и исчерпывающий характер.						
	Обучающийся в целом раскрывает теоретические вопросы,						
«Хорошо»	однако ответ хотя бы на один из них не носит развернутого и						
	исчерпывающего характера.						
	Обучающийся в целом раскрывает теоретические вопросы и						
Who hat book to his way.	допускает ряд неточностей, фрагментарно раскрывает						
«Удовлетворительно»	содержание теоретических вопросов или их раскрывает						
	содержательно, но допуская значительные неточности.						
«Неудовлетворительно	Обучающийся не знает ответов на поставленные						
»	теоретические вопросы.						

8.2.2. Темы для докладов

Не предусмотрены

8.2.3. Оценочные средства остаточных знаний (тест)

- 1. Какие решающие элементы используются в аналоговых ЭВМ? а) сумматор;
 - б) интегратор; в) инвертор;
 - г) арифметико-логическое устройство.
 - 2. Каков класс решаемых задач на аналоговых ЭВМ?
 - а) дифференциальные уравнения;
 - б) матричные уравнения;
 - в) навигационные задачи;
 - г) любые задачи.
 - 3.Из чего состоит элементная база?
 - а) электронная лампа;
 - б) транзистор;
 - в) интегральные схемы МИС и СИС; г) интегральные схемы БИС и СБИС.
 - 4. Устройства оперативной памяти это ?
 - а) ферритовая память;
 - б) память на электронных лампах;
 - в) полупроводниковая память.
 - 5. Устройства внешней памяти это..?
 - а) электронно-лучевые трубки;
 - б) магнитная лента;
 - в) магнитный барабан;
 - г) жесткий магнитный диск.
 - 6. Устройства ввода это...?
 - а) клавиатура;
 - б) перфолента; в) перфокарта;

- г) коммутационное поле; д) сканер.
- 7. Устройства вывода это...?
- а) печатающее устройство; б) черно-белый дисплей;
- в) цветной дисплей; г) графопостроитель.
- 8.Какое из приведенных целых двоичных чисел является эквивалентом целого десятичного числа 147?
 - а)10110101; б)10010011; в)10010111.
 - 9. Какие функции выполняет счетчик:
 - а) логический сдвиг содержимого;
 - б) подсчет поступающих на его вход импульсов;
- в) преобразование последовательности импульсов в эквивалентный двоичный код;
 - г) логического сложения.
- 10.В каком типе адресных ЗУ время обращения к ячейке не зависит от расположения ячейки в памяти?
 - а) последовательное ЗУ; б) циклическое ЗУ.
- 11. Какое ЗУ используется только для хранения и выдачи неизменной информации и исполняется на интегральных схемах?
 - а) ВЗУ; б) СОЗУ;
 - в) регистр; г) БЗУ;
 - д) ПЗУ.
 - 12. Какое ЗУ из приведенных ниже имеет самую большую емкость?
 - a) CO3У;
 - б) ПЗУ;
 - в) ВЗУ.
 - 13. По организации запоминающей матрицы различают ОЗУ:
 - а) с линейной и матричной адресацией;
 - б) с линейной и нелинейной адресацией;
 - в) с нелинейной и матричной адресацией.
- 14. Если разрядность слов n=8, то какое кол-во выходов каждого дешифратора нужно для двухкоординатной выборки (кол-во выходов для каждого Дш считать одинаковым)?
 - a) 16;
 - б) 1024;
 - в) 1;
 - г) 32;
 - д) 2

- 15. Разновидности способов передачи информации.
- 16. а) синхронный;
- б) асинхронный со стробированием;
- в) синхронный со стробированием;
- г) асинхронный;
- д) синхронный с квитированием.
- 17. Как организована работа Пр и ВУ при программном обмене?
- а) параллельно (работают одновременно);
- б) комбинируют параллельную и последовательную работу;
- в) последовательно (работают поочередно).
- 18. Какие альтернативные названия имеет управляющий блок: а) конечный автомат;
 - б) управляющий автомат;
 - в) регулирующее устройство;
 - г) микропрограммный автомат;
 - д) логическая схема с памятью.
 - 18. На базе каких триггеров построены счетчики:
 - а) RS-триггеров; б) D-триггеров; в) Т-триггеров; г) JK-триггеров.
- 19. МПА, построенные с использованием естественного или принудительного метода адресации микрокоманд имеет следующие особенности:
 - а) формат микрокоманды;
 - б) форматы микрокоманд;
 - в) структурная схема;
 - г) структурная схема;
 - д) эффективность использования памяти;
 - е) более высокое быстродействие;
 - ж) неэффективность использования памяти.
- 20. При каком минимальном значении температуры вспышки бракуется трансформаторное масло?
 - 1. 120°C.
 - 2. 150°C.
 - 3. 125°C.
- 21. Что характеризует температура вспышки трансформаторного масла?
 - 1. Испаряемость масла.
 - 2. Наличие летучих углеводородов.
 - 3. Горючесть масла.
- 22. Какие существуют схемы измерения диэлектрических потерь?
 - 1. Прямая, обратная, перевернутая.

- 2. Прямая, косвенная, циклическая.
- 3. Обратная, смешанная, кольцеобразная.
- 23. Что характеризует пробивное напряжение масла?
 - 1. Наличие в масле примесей, в основном влаги.
 - 2. Наличие в масле кислоты.
 - 3. Наличие в масле углеродосодержащих примесей.
- 24. Какой газ используется в хроматографии в качестве газа носителя?
 - 1. Гелий.
 - 2. Кислород.
 - 3. Водород.
- 25. Какой материал используется в качестве сорбента в хроматографии?
 - IIIлак.
 - 2. Молекулярное сито.
 - 3. Вата.
- 26. Какое максимальное количество газовых реле имеет силовой трансформатор?
 - 1. Один.
 - 2. Два.
 - 3. Три.
- 27. Для чего предназначен предохранительный клапан на СТ?
 - 1. Для предохранения разрушения бака СТ.
 - 2. Для предохранения разрушения вводов СТ.
 - 3. Для предохранения разрушения расширителя СТ.
- 28. Измерительный трансформатор напряжения типа НАМИ является:
 - 1. Античным.
 - 2. Антирезонансным.
 - 3. Антивандальным.
- 29. Какой прибор применяют при измерении контура заземлении подстанции
 - 1. M416.
 - 2. P5026.
 - 3. ВАФ-85.
- 29. Какой прибор применяют при измерении диэлектрических потерь?
 - 1. M416.
 - 2. P5026.
 - 3. ВАФ-85.
- 30. Какой прибор применяют при измерении контактных соединений?
 - 1. M416.
 - 2. P5026.
 - 3. P333.

1	2	3	4	5	6	7	8	9	10	1	12	1	14	15
										1		3		
б	б	В	a	a	В	В	б	б	В	a	a	a	б	В

16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
----	----	----	----	----	----	----	----	----	----	----	----	----	----	----

			_									_		
а	า	D D	16	1 3	17	1 I	l I		17	17		17	1 I	1 3
а	l a	D)		1	1	I			1		1)

Шкала оценивания результатов тестирования

% верных решений (ответов)	Шкала оценивания				
85 - 100	онрикто				
70 - 84	хорошо				
50- 69	удовлетворительно				
0 - 49	неудовлетворительно				

Темы для самостоятельной работы студентов

Вариант 1

Какие функции выполняет счетчик:

- а) логический сдвиг содержимого;
- б) подсчет поступающих на его вход импульсов;
- в) преобразование последовательности импульсов в эквивалентный двоичный кол:
- г) логического сложения.
- 2. В каком типе адресных ЗУ время обращения к ячейке не зависит от расположения ячейки в памяти?
- а) последовательное ЗУ; б) циклическое ЗУ.
- 3. Какое ЗУ используется только для хранения и выдачи неизменной информации и исполняется на интегральных схемах?
- а) ВЗУ; б) СОЗУ; в) регистр; г) БЗУ; д) ПЗУ.
 - 4. Какое ЗУ из приведенных ниже имеет самую большую емкость?
- а) СОЗУ; б) ПЗУ; в) ВЗУ.
- 5. По организации запоминающей матрицы различают ОЗУ:
- а) с линейной и матричной адресацией;
- б) с линейной и нелинейной адресацией;
- в) с нелинейной и матричной адресацией.
- 6. Если разрядность слов n=8, то какое кол-во выходов каждого дешифратора нужно для двухкоординатной выборки (кол-во выходов для каждого Дш считать одинаковым)?
- а) 16; б) 1024; в) 1; г) 32; д) 2
 - 7. Разновидности способов передачи информации.
- а) синхронный; б) асинхронный со стробированием;
- в) синхронный со стробированием; г) асинхронный;
- д) синхронный с квитированием.
 - 8. Как организована работа Пр и ВУ при программном обмене?
- а) параллельно (работают одновременно);
- б) комбинируют параллельную и последовательную работу;
- в) последовательно (работают поочередно).
 - 9. Какие альтернативные названия имеет управляющий блок:

- а) конечный автомат; б) управляющий автомат;
- в) регулирующее устройство; г) микропрограммный автомат;
- д) логическая схема с памятью.
 - 10. На базе каких триггеров построены счетчики:
- а) RS-триггеров; б) D-триггеров; в) Т-триггеров; г) JK-триггеров.
- 11. МПА, построенные с использованием естественного или принудительного метода адресации микрокоманд имеет следующие особенности:
- а) формат микрокоманды; б) форматы микрокоманд;
- в) структурная схема; г) структурная схема;
- д) эффективность использования памяти;
- е) более высокое быстродействие;
- ж) неэффективность использования памяти.
 - 12. Устройство компьютера, предназначенное для передачи данных:
- а) системная плата; б) контроллер;
- в) микропроцессор; г) оперативное запоминающее устройство.
 - 13. Процессор, функционирующий с сокращенным набором команд:
- a) CISC; б) RISC; в) MISC; г) VLIW.
 - 14. Такт работы процессора это...?
- а) период времени, за который осуществляется выполнение команды исходной программы в машинном виде; состоит из нескольких тактов;
- б) устройство, предназначенное для временного хранения данных ограниченного размера;
- в) комплекс команд, поддерживающий работу системы;
- г) промежуток времени между соседними импульсами генератора тактовых импульсов.
 - 15. К основным параметрам МП не относится:
- а) тактовая частота; б) внутренняя разрядность данных;
- в) пропускная способность; г) адресуемая память.

Вариант 2

- 1. Основное исполнительное устройство в процессоре это:
- а) ядро; б) буфер адреса переходов; в) предсказатель переходов; г) шина.
 - 2. Количество бит, которые МП может обрабатывать одновременно это:
- а) внешняя разрядность данных; б) тактовая частота;
- в) внутренняя разрядность данных; г) степень интеграции микросхемы.
 - 3. Упрощенный вариант Pentium II для дешевых компьютеров это:
- a) Pentium P55; δ) Celeron; в) Cyrix; г) AMD.
 - 4. От разрядности микропроцессора зависит:
- а) количество используемых внешних устройств;
- б) максимальный объем внутренней памяти и производительность компьютера;
- в) возможность подключения к сети;
- г) возможность сжатия данных.
 - 5. В состав микропроцессора входят:
- а) устройство управления (УУ);
- б) постоянное запоминающее устройство (ПЗУ);

- в) кодовая шина данных;
- г) арифметико логическое устройство.
 - 6. Конвейеризация это...?
- а) процесс реализации процессорных команд по нескольким линиям;
- б) технология обработки команд;
- в) многопоточная параллельная обработка команд;
- г) технология обработки данных несколькими процессорами одновременно.
 - 7. Все виды информации имеют следующие характеристики:
- а) непрерывность по времени;
- б) дискретизация по времени;
- в) непрерывность по величине;
- д) квантование по уровню.
 - 8. Какие способы программирования используются в гибридных ЭВМ?
- а) с помощью коммутационного поля;
- б) с помощью алгоритмического языка.
- 9. Представить смешанное десятичное число 147.638 в двоично-десятичной СС:
- a) 0011 0100 0110,0110 0011 1000;
- 6) 0001 0100 0111,0110 0011 1000;
- в) 0011 0101 0111,0110 0111 1001.
 - 10. Особенности кодовых форм:
- а) значащая часть числа не зависит от знака числа;
- б) простота представления отрицательных чисел;
- в) необходимость использования логических операций при выполнении арифметических операций;
- г) зависимость вида значащей части от знака числа;
- д) возникновение циклического переноса;
- е) отсутствие циклического переноса;
- ж) замена операции вычитания на операцию сложения.
 - 11. Регистр является совокупностью:
- а) логических элементов И;
- б) триггеров;
- в) логических элементов ИЛИ.
 - 12. Каких типов бывают регистры:
- а) статические; б) динамические; в) сдвиговые; г) счетные.
- 13. Какой тип адресных ЗУ является наиболее гибким и совершенным по своим возможностям?
- а) последовательное ЗУ;
- б) циклическое ЗУ;
- в) ЗУ с произвольным доступом.
 - 14. Какая из формул правильная:
- а) Toбp = tn + tcч; б) Toбp = tn + tзn; в) ни одна из них.
 - 15. Какое ЗУ из приведенных ниже самое быстродействующее?
- а) ВЗУ; б) ОЗУ; в) СОЗУ.

Вариант 3

- 1. Если МЗЭ состоит из 512 столбцов и 128 строк, то сколько нужно циклов регенерации, чтобы восстановить всю память?
- a) 1; б) 2^9; в) 2^7; г) 2; д) 2^16.
- 2. Если разрядность слов n=8,то, сколько нужно выходов дешифратора для однокоординатной выборки?
- а) 1024; б) 256; в) 8; г) 1.
 - 3. Какие блоки входят в классическую структуру ЭВМ?
- а) память; б) процессор; в) устройство ввода; г) устройство вывода;
- д) внешняя память; е) микропроцессор; ж) интерфейс «общая шина».
 - 4. Кто является инициатором программного обмена?
- а) оператор; б) память; в) процессор; г) внешнее устройство.
- 5. Известны следующие методы организации выполнения операции умножения: синхронная и асинхронная, которые характеризуются:
- а) одинаковой длительностью вычислительного такта;
- б) различной длительностью вычислительного такта;
- в) сложностью реализации микропрограммного автомата;
- г) простотой реализации микропрограммного автомата;
- д) невысоким быстродействием; е) повышенным быстродействием;
- 7. Блоки, входящие в состав ЦВУ воспринимают и генерируют следующие сигналы:
- а) сигналы управления;
- б) значения разрядов кода выполняемой функции; в) адресные сигналы;
- г) известительные (обратной связи) сигналы;
- д) сигналы внутреннего состояния.
 - 8. Программное обеспечение это...
- а) совокупность устройств установленных на компьютере;
- б) совокупность программ установленных на компьютере;
- в) все программы которые у вас есть на диске;
- г) все устройства которые существуют в мире.
 - 9. Что не является объектом операционной системы Windows?
- а) рабочий стол; б) панель задач; в) папка; г) процессор; д) корзина.
- 10. С какой клавиши можно начать работу в операционной системе Windows?
 - а) старт; б) запуск; в) марш; г) пуск.
- 11. Устройство для преобразования звука из аналоговой формы в цифровую:
- а) трекбол; б) винчестер; в) оперативная память;
 - 12. Устройство компьютера, предназначенное для передачи данных:
- а) системная плата; б) контроллер;
- в) микропроцессор; г) оперативное запоминающее устройство.
 - 13. Процессор, функционирующий с сокращенным набором команд:
- a) CISC; б) RISC; в) MISC; г) VLIW.
 - 14. Такт работы процессора это...?
- а) период времени, за который осуществляется выполнение команды исходной программы в машинном виде; состоит из нескольких тактов;

- б) устройство, предназначенное для временного хранения данных ограниченного размера;
 - в) комплекс команд, поддерживающий работу системы;
- г) промежуток времени между соседними импульсами генератора тактовых импульсов.
 - 15. К основным параметрам МП не относится:
- а) тактовая частота; б) внутренняя разрядность данных;
- в) пропускная способность; г) адресуемая память.

Вариант 4

- 1. Основное исполнительное устройство в процессоре это:
- а) ядро; б) буфер адреса переходов; в) предсказатель переходов; г) шина.
 - 2. Количество бит, которые МП может обрабатывать одновременно это:
- а) внешняя разрядность данных; б) тактовая частота;
- в) внутренняя разрядность данных; г) степень интеграции микросхемы.
 - 3. Упрощенный вариант Pentium II для дешевых компьютеров это:
- a) Pentium P55; δ) Celeron; в) Cyrix; г) AMD.
 - 4. От разрядности микропроцессора зависит:
- а) количество используемых внешних устройств;
- б) максимальный объем внутренней памяти и производительность компьютера;
- в) возможность подключения к сети;
- г) возможность сжатия данных.
 - 5. В состав микропроцессора входят:
- а) устройство управления (УУ);
- б) постоянное запоминающее устройство (ПЗУ);
- в) кодовая шина данных;
- г) арифметико логическое устройство.
 - 6. Конвейеризация это...?
- а) процесс реализации процессорных команд по нескольким линиям;
- б) технология обработки команд;
- в) многопоточная параллельная обработка команд;
- г) технология обработки данных несколькими процессорами одновременно.
 - 7. Особенности кодовых форм:
- а) значащая часть числа не зависит от знака числа;
- б) простота представления отрицательных чисел;
- в) необходимость использования логических операций при выполнении арифметических операций;
- г) зависимость вида значащей части от знака числа;
- д) возникновение циклического переноса;
- е) отсутствие циклического переноса;
- ж) замена операции вычитания на операцию сложения.
 - 8. Регистр является совокупностью:
- а) логических элементов И; б) триггеров; в) логических элементов ИЛИ.
 - 9. Каких типов бывают регистры:
- а) статические; б) динамические; в) сдвиговые; г) счетные.

- 10. Какой тип адресных ЗУ является наиболее гибким и совершенным по своим возможностям?
- а) последовательное ЗУ;
- б) циклическое ЗУ;
- в) ЗУ с произвольным доступом.
 - 11. Какая из формул правильная:
- а) $Toбр = t\Pi + tcч; б) Toбр = t\Pi + tз\Pi; в)$ ни одна из них.
 - 12. Какое ЗУ из приведенных ниже самое быстродействующее?
- а) ВЗУ; б) ОЗУ; в) СОЗУ.
- 13. Если МЗЭ состоит из 512 столбцов и 128 строк, то сколько нужно циклов регенерации, чтобы восстановить всю память?
- а) 1; б) 2^9; в) 2^7; г) 2; д) 2^16.
 - 14. Какие блоки входят в классическую структуру ЭВМ?
- а) память; б) процессор; в) устройство ввода; г) устройство вывода;
- д) внешняя память; е) микропроцессор; ж) интерфейс «общая шина».
 - 15. Особенности кодовых форм:
- а) значащая часть числа не зависит от знака числа;
- б) простота представления отрицательных чисел;
- в) необходимость использования логических операций при выполнении арифметических операций;
- г) зависимость вида значащей части от знака числа;
- д) возникновение циклического переноса;
- е) отсутствие циклического переноса;
- ж) замена операции вычитания на операцию сложения.

Вариант	Ответы									
	1	2	3	4	5	6	7	8	9	10
1	Γ	Γ	В	Д	Γ	б	a	Д	В	б
2	б	Д	a	В	a	В	Γ	Γ	б	б
3	a	Γ	б	Д	Γ	a	a	e	В	б
4	б	Д	Γ	В	a	В	б	Γ	б	ж

Шкала оценивания

% верных решений (ответов)	Шкала оценивания				
85 - 100	отлично				
70 - 84	хорошо				
50- 69	удовлетворительно				
0 - 49	неудовлетворительно				

8.2.4. Индивидуальные задания для выполнения расчетнографической работы, курсовой работы (проекта)

РГР, КР и КП по дисциплине «Микропроцессорные системы в энергетике» рабочей программой и учебным планом не предусмотрены.

8.2.5. ОЦЕНОЧНЫЕ КОНТРОЛЯ

СРЕДСТВА

ПРОМЕЖУТОЧНОГО

Вопросы (задания) для экзамена:

- 1. Виды микроконтроллеров.
- 2. Архитектура процессоров
- 3. Виды памяти микроконтроллеров.
- 4. Запуск и сброс в начальное состояние.
- 5. Периферийные узлы МК.
- 6. Организация ядра AVR-контроллеров.
- 7. Программная модель AVR-микроконтроллеров.
- 8. Периферийные устройства AVR.
- 9. Порты ввода/вывода.
- 10. Таймеры/счетчики.
- 11. Регистры специального назначения.
- 12. Универсальный асинхронный приемопередатчик (UART).
- 13. Аналого-цифровой преобразователь (ADC). 16
- 14. Цифроаналоговый преобразователь.
- 15. Принцип обмена информацией.
- 16. Режимы обмена информацией.
- 17. Управление обменом в системных интерфейсах.
- 18. Понятие симплексного обмена.
- 19. Понятие полудуплексного обмена.
- 20. Понятие дуплексного обмена.
- 21. Понятие магистрального канала.
- 22. Понятие радиального канала.
- 23. Программно-управляемая передача данных.
- 24. Синхронная передача данных.
- 25. Асинхронная передача данных.
- 26. Обмен в режиме прерывания программы.
- 27. Организация программного опроса.
- 28. Прерывание по вектору.
- 29. Понятие адреса вектора прерывания.
- 30. Многоуровневые прерывания.
- 31. Прямой доступ к памяти.
- 32. Контроллер прямого доступа к памяти.
- 33. Инициаторы обмена и управляющие обменом устройства в различных режимах.
 - 34. Дайте определение и назначение последовательного интерфейса.
 - 35. Перечислите стандартные скорости обмена для асинхронного режима.
 - 36. Дайте характеристику интерфейса RS-232C.
- 37. Охарактеризуйте аппаратный и программный протокол управления потоком данных.
 - 38. Расскажите о методике выбора кабеля для связи.
 - 39. Модули МПСУ, используемые в качестве управляющих
 - 40. Назначение модулей связи с оператором.
 - 41. Количество линий связи для передачи данных, адресов, команд.

- 42. Длина линий связи.
- 43. Быстродействие приёмопередающих устройств и пропускная способность линий связи.
 - 44. Число подключаемых устройств.
 - 45. Тип линий связи.
 - 46. Тип организаций линий связей.
 - 47. Определение активного устройства.
 - 48. Определение пассивного устройства.
 - 49. Определение ведущего устройства.
 - 50. Определение ведомого устройства.
 - 51. Определение протокола обмена.
 - 52. Понятие симплексного обмена.
 - 53. Понятие полудуплексного обмена.
 - 54. Понятие дуплексного обмена.
 - 55. Понятие магистрального канала.
 - 56. Обмен в режиме прерывания программы.
- 57. Организация программного опроса 12. Организация опроса по "дейзицепочке".
 - 58. Контроллер прямого доступа к памяти.
- 59. Инициаторы обмена и управляющие обменом устройства в различных режимах.
 - 60. Универсальный асинхронный приемопередатчик (UART).

8.3. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций

Основной целью проведения промежуточной аттестации является определение степени достижения целей по учебной дисциплине или ее разделам. Осуществляется это проверкой и оценкой уровня теоретической знаний, полученных обучающимися, умения применять их в решении практических задач, степени овладения обучающимися практическими навыками и умениями в объеме требований рабочей программы по дисциплине, а также их умение самостоятельно работать с учебной литературой.

Организация проведения промежуточной аттестации регламентирована «Положением об организации образовательного процесса в федеральном государственном автономном образовательном учреждении «Московский политехнический университет»

8.3.1. Показатели оценивания компетенций на различных этапах их формирования, достижение обучающимися планируемых результатов обучения по дисциплине

Код и наименование компетенции ПК-6 Способен осуществлять правовую экспертизу проектов нормативных правовых актов в соответствие с требованиями антимонопольного законодательства

Этап		Критерии оце	нивания	
(уровень)	неудовлетворительно	удовлетворительно	хорошо	отлично
знать	Обучающийся	Обучающийся	Обучающийся	Обучающийся
	демонстрирует полное	демонстрирует	демонстрирует	демонстрирует
	отсутствие или	неполное	частичное	полное соответствие
	недостаточное	соответствие	соответствие	следующих знаний:
	соответствие	следующих знаний:	следующих знаний:	Основные
	следующих знаний:	Основные	Основные	электроэнергетическ
	Основные	электроэнергетически	электроэнергетичес	ие объекты, для
	электроэнергетические	е объекты, для	кие объекты, для	которых актуально
	объекты, для которых	которых актуально	которых актуально	применение
	актуально применение	применение	применение	микропроцессорных
	микропроцессорных	микропроцессорных	микропроцессорны	систем управления
	систем управления	систем управления	х систем	(МСУ);
	(МСУ);	(МСУ);	управления (МСУ);	Функциональные и
	Функциональные и	Функциональные и	Функциональные и	структурные схемы
	структурные схемы объектов и систем;	структурные схемы объектов и систем;	структурные схемы объектов и систем;	объектов и систем; Принципы цифровой
	Принципы цифровой	Принципы цифровой	Принципы	обработки
	обработки информации;	обработки	цифровой	информации;
	Принципы построения	информации;	обработки	Принципы
	микропроцессорных	Принципы построения	информации;	построения
	устройств обработки	микропроцессорных	Принципы	микропроцессорных
	информации и	устройств обработки	построения	устройств обработки
	программируемых	информации и	микропроцессорны	информации и
	логических	программируемых	х устройств	программируемых
	контроллеров;	логических	обработки	логических
	Типовые конфигурации	контроллеров;	информации и	контроллеров;
	микропроцессорных	Типовые	программируемых	Типовые
	систем управления и	конфигурации	логических	конфигурации
	систем обработки	микропроцессорных	контроллеров;	микропроцессорных
	данных, применяемых	систем управления и	Типовые	систем управления и
	на	систем обработки	конфигурации	систем обработки
	электроэнергетических	данных, применяемых	микропроцессорны	данных,
	объектах; Структуру и	на	х систем	применяемых на
	принципы организации	электроэнергетически	управления и	электроэнергетическ
	программного	х объектах; Структуру	систем обработки	их объектах;
	обеспечения	и принципы	данных,	Структуру и
	микропроцессорных	организации	применяемых на	принципы
	устройств обработки	программного	электроэнергетичес	организации
	информации и	обеспечения	ких объектах;	программного
	программируемых	микропроцессорных	Структуру и	обеспечения
	логических	устройств обработки	принципы	микропроцессорных
	контроллеров.	информации и	организации	устройств обработки
		программируемых	программного	информации и
		логических	обеспечения	программируемых
		контроллеров.	микропроцессорны	логических
			х устройств	контроллеров.
			обработки информации и	
			программируемых логических	
VMOTE	Обучающийся не умеет	Обучающийся	контроллеров. Обучающийся	Обучающийся
уметь	или в недостаточной	демонстрирует	демонстрирует	демонстрирует
	степени умеет	неполное	частичное	полное соответствие
	выполнять:	соответствие	соответствие	следующих умений:
	DMIIOMINID.	COOLDCICIDMC	COOLDCICIDALC	оледующих умении.

	Составлять функциональные и структурные схемы управления различными электроэнергетическим и объектами; Выбирать средства технической реализации микропроцессорных систем управления; Программировать микропроцессорные системы управления на основе ПЛК широкого применения.	следующих умений: Составлять функциональные и структурные схемы управления различными электроэнергетически ми объектами; Выбирать средства технической реализации микропроцессорных систем управления; Программировать микропроцессорные системы управления на основе ПЛК широкого	следующих умений: Составлять функциональные и структурные схемы управления различными электроэнергетичес кими объектами; Выбирать средства технической реализации микропроцессорны х систем управления; Программировать микропроцессорны е системы управления на	Составлять функциональные и структурные схемы управления различными электроэнергетическ ими объектами; Выбирать средства технической реализации микропроцессорных систем управления; Программировать микропроцессорные системы управления на основе ПЛК широкого применения.
		применения.	управления на основе ПЛК широкого применения.	
владеть	Обучающийся не владеет или в недостаточной степени владеет:	Обучающийся владеет в неполном объеме и проявляет недостаточность владения навыками работы	Обучающимся допускаются незначительные ошибки, неточности, затруднения, частично владеет навыками работы	Обучающийся свободно применяет полученные навыки, в полном объеме владеет навыками работы

8.3.2. Методика оценивания результатов промежуточной аттестации

Показателями оценивания компетенций на этапе промежуточной аттестации по дисциплине «Микропроцессорные системы в энергетике» являются результаты обучения по дисциплине.

Оценочный лист результатов обучения по дисциплине

Код компетенции	Знания	Умения	Навыки	Уровень сформированности компетенции на данном этапе / оценка
ОПК-2	Автоматизирует решение задач и реализует алгоритмы с использованием программных средств	Способен разрабатывать компоненты программно-аппаратных комплексов и баз данных	Способен разрабатывать клиентские приложения к базам данных	
Оценка по дисциплине (среднее арифметическое)				

Оценка по дисциплине зависит от уровня сформированности компетенций, закрепленных за дисциплиной и представляет собой среднее

арифметическое от выставленных оценок по отдельным результатам обучения (знания, умения, навыки).

Оценка «зачтено» выставляется, если среднее арифметическое находится в интервале от 2,4 до 5,0. Оценка «не зачтено» выставляется, если среднее арифметическое находится в интервале от 0 до 2,4.

Оценка «отлично» выставляется, если среднее арифметическое находится в интервале от 4,5 до 5,0. Оценка «хорошо» выставляется, если среднее арифметическое находится в интервале от 3,5 до 4,4. Оценка «удовлетворительно» выставляется, если среднее арифметическое находится в интервале от 2,5 до 3,4. Оценка «неудовлетворительно» выставляется, если среднее арифметическое находится в интервале от 0 до 2,4.

Шкала оценивания	Описание
Отлично	Выполнены все виды учебной работы, предусмотренные учебным планом. Студент демонстрирует соответствие знаний, умений, навыков приведенным в таблицах показателей, оперирует приобретенными знаниями, умениями, навыками, применяет их в ситуациях повышенной сложности. При этом могут быть допущены незначительные ошибки, неточности, затруднения при аналитических операциях, переносе знаний и умений на новые, нестандартные ситуации.
Хорошо	Выполнены все виды учебной работы, предусмотренные учебным планом. Студент демонстрирует неполное, правильное соответствие знаний, умений, навыков приведенным в таблицах показателей, либо если при этом были допущены 2-3 несущественные ошибки.
Удовлетворительно	Выполнены все виды учебной работы, предусмотренные учебным планом. Студент демонстрирует соответствие знаний, в котором освещена основная, наиболее важная часть материала, но при этом допущена одна значительная ошибка или неточность.
Неудовлетворительно	Не выполнен один или более видов учебной работы, предусмотренных учебным планом. Студент демонстрирует неполное соответствие знаний, умений, навыков приведенным в таблицах показателей, допускаются значительные ошибки, проявляется отсутствие знаний, умений, навыков по ряду показателей, студент испытывает значительные затруднения при оперировании знаниями и умениями при их переносе на новые ситуации.

9. Электронная информационно-образовательная среда

Каждый обучающийся в течение всего периода обучения обеспечивается индивидуальным неограниченным доступом к электронной информационно-образовательной среде Чебоксарского института (филиала) Московского политехнического университета из любой точки, в которой имеется доступ к

информационно-телекоммуникационной сети «Интернет» (далее – сеть «Интернет»), как на территории филиала, так и вне ее.

Электронная информационно-образовательная среда — совокупность информационных и телекоммуникационных технологий, соответствующих технологических средств, обеспечивающих освоение обучающимися образовательных программ в полном объёме независимо от места нахождения обучающихся, Электронная информационно-образовательная среда обеспечивает:

- а) доступ к учебным планам, рабочим программам дисциплин (модулей), практик, электронным учебным изданиям и электронным образовательным ресурсам, указанным в рабочих программах дисциплин (модулей), практик;
- б) формирование электронного портфолио обучающегося, в том числе сохранение его работ и оценок за эти работы;
- в) фиксацию хода образовательного процесса, результатов промежуточной аттестации и результатов освоения программы бакалавриата;
- г) проведение учебных занятий, процедур оценки результатов обучения, реализация которых предусмотрена с применением электронного обучения, дистанционных образовательных технологий;
- д) взаимодействие между участниками образовательного процесса, в том числе синхронное и (или) асинхронное взаимодействия посредством сети «Интернет».

Функционирование электронной информационно-образовательной среды обеспечивается соответствующими средствами информационно-коммуникационных технологий и квалификацией работников, ее использующих и поддерживающих.

Функционирование электронной информационно-образовательной среды соответствует законодательству Российской Федерации. Основными составляющими ЭИОС филиала являются:

- a) сайт института в сети Интернет, расположенный по адресу www.polytech21.ru, https://chebpolytech.ru/ который обеспечивает:
- доступ обучающихся к учебным планам, рабочим программам электронных библиотечных практик, изданиям дисциплин, К электронным информационным и образовательным ресурсам, указанных в сайта «Сведения рабочих программах (разделы об образовательной организации»);
- информирование обучающихся обо всех изменениях учебного процесса (новостная лента сайта, лента анонсов);
- взаимодействие между участниками образовательного процесса (подразделы сайта «Задать вопрос директору»);
- б) официальные электронные адреса подразделений и сотрудников института с Яндекс-доменом @polytech21.ru (список контактных данных подразделений Филиала размещен на официальном сайте Филиала в разделе «Контакты», списки контактных официальных электронных данных преподавателей размещены в подразделах «Кафедры») обеспечивают взаимодействие между участниками образовательного процесса;

- в) личный кабинет обучающегося (портфолио) (вход в личный кабинет размещен на официальном сайте Филиала в разделе «Студенту» подразделе «Электронная информационно-образовательная среда») включает в себя портфолио студента, электронные ведомости, рейтинг студентов и обеспечивает:
- фиксацию хода образовательного процесса, результатов промежуточной аттестации и результатов освоения образовательных программ обучающимися,
- формирование электронного портфолио обучающегося, в том числе с сохранение работ обучающегося, рецензий и оценок на эти работы,
- г) электронные библиотеки, включающие электронные каталоги, полнотекстовые документы и обеспечивающие доступ к учебно-методическим материалам, выпускным квалификационным работам и т.д.:

Чебоксарского института (филиала) - «ИРБИС»

- д) электронно-библиотечные системы (ЭБС), включающие электронный каталог и полнотекстовые документы:
 - «ЛАНЬ» -<u>www.e.lanbook.com</u>
 - Образовательная платформа Юрайт -https://urait.ru
- e) платформа цифрового образования Политеха -https://lms.mospolytech.ru/
 - ж) система «Антиплагиат» https://www.antiplagiat.ru/
- 3) система электронного документооборота DIRECTUM Standard обеспечивает документооборот между Филиалом и Университетом;
- и) система «1С Управление ВУЗом Электронный деканат» (Московский политехнический университет) обеспечивает фиксацию хода образовательного процесса, результатов промежуточной аттестации и результатов освоения образовательных программ обучающимися;
- к) система «POLYTECH systems» обеспечивает информационное, документальное автоматизированное сопровождение образовательного процесса;
- л) система «Абитуриент» обеспечивает документальное автоматизированное сопровождение работы приемной комиссии.

10. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины

Основная литература

- 1.Ананичева, С. С. Электроэнергетические системы и сети. Примеры и задачи : учебник для вузов / С. С. Ананичева, С. Н. Шелюг ; под научной редакцией Е. Н. Котовой. 2-е изд. Москва : Издательство Юрайт, 2025. 177 с. (Высшее образование). ISBN 978-5-534-07672-1. Текст : электронный // Образовательная платформа Юрайт [сайт]. URL: https://urait.ru/bcode/564683
- 2.Папков, Б. В. Электроэнергетические системы и сети. Токи короткого замыкания: учебник и практикум для вузов / Б. В. Папков, В. Ю. Вуколов. 3-е изд., испр. и доп. Москва: Издательство Юрайт, 2025. 353 с. (Высшее

- образование). ISBN 978-5-9916-8148-3. Текст : электронный // Образовательная платформа Юрайт [сайт]. URL: https://urait.ru/bcode/561831 Дополнительная литература
- 1.Климова, Г. Н. Электроэнергетические системы и сети. Энергосбережение : учебник для вузов / Г. Н. Климова. 3-е изд., перераб. и доп. Москва : Издательство Юрайт, 2025. 177 с. (Высшее образование). ISBN 978-5-534-18108-1. Текст : электронный // Образовательная платформа Юрайт [сайт]. URL: https://urait.ru/bcode/561300

Периодика

- 1. Известия Тульского государственного университета. Технические науки : Научный рецензируемый журнал. https://tidings.tsu.tula.ru/tidings/index.php?id=technical&lang=ru&year=1. Текст : электронный.
- 2. Научный периодический журнал «Вестник Южно-Уральского государственного университета. Серия «Энергетика»: Научный рецензируемый журнал. https://www.powervestniksusu.ru/index.php/PVS. Текст: электронный.

11. Профессиональные базы данных и информационно-справочные системы

CHCICNIBI	
Профессиональная база данных и информационно- справочные системы	Информация о праве собственности (реквизиты договора)
Университетская информационная система РОССИЯ https://uisrussia.msu.ru/	Тематическая электронная библиотека и база для прикладных исследований в области экономики, управления, социологии, лингвистики, философии, филологии, международных отношений, права. свободный доступ
научная электронная библиотека Elibrary http://elibrary.ru/	Научная электронная библиотека eLIBRARY.RU - это крупнейший российский информационно-аналитический портал в области науки, технологии, медицины и образования, содержащий рефераты и полные тексты более 26 млн научных статей и публикаций, в том числе электронные версии более 5600 российских научнотехнических журналов, из которых более 4800 журналов в открытом доступе свободный доступ
сайт Института научной информации по общественным наукам РАН. http://www.inion.ru	Библиографические базы данных ИНИОН РАН по социальным и гуманитарным наукам ведутся с начала 1980-х годов. Общий объём массивов составляет более 3 млн. 500 тыс. записей (данные на 1 января 2012 г.). Ежегодный прирост — около 100 тыс. записей. В базы данных включаются аннотированные описания книг и статей из журналов и сборников на 140 языках, поступивших в Фундаментальную библиотеку ИНИОН РАН. Описания статей и книг в базах данных снабжены шифром хранения и ссылками на полные тексты источников из Научной электронной библиотеки.
Федеральный портал «Российское	Федеральный портал «Российское образование» – уникальный интернет-ресурс в сфере образования и науки.

	Ежедневно публикует самые актуальные новости, анонсы	
	событий, информационные материалы для широкого круга	
	читателей. Еженедельно на портале размещаются	
образование» [Электронны	эксклюзивные материалы, интервью с ведущими	
й	специалистами – педагогами, психологами, учеными,	
pecypc] – http://www.edu.ru	репортажи и аналитические статьи.	
	Читатели получают доступ к нормативно-правовой базе	
	сферы образования, они могут пользоваться самыми	
	различными полезными сервисами – такими, как онлайн-	
	тестирование, опросы по актуальным темам и т.д.	

12. Программное обеспечение (лицензионное и свободно распространяемое), используемое при осуществлении образовательного

процесса

Аудитория	Программное обеспечение	Информация о праве собственности (реквизиты договора, номер лицензии и т.д.)
№ 2066 Учебная аудитория для проведения учебных	Kaspersky Endpoint Security Стандартный Educational Renewal 2 года. Band S: 150-249	Номер лицензии 2B1E-211224- 064549-2-19382 от 24.12.2021
занятий	Windows 7 OLPNLAcdmc	договор №Д03 от 30.05.2012) с допсоглашениями от 29.04.14 и 01.09.16 (бессрочная лицензия)
	MS Windows 10 Pro	договор № 392_469.223.3К/19 от 17.12.19 (бессрочная лицензия)
	Microsoft Office Standard 2019(Microsoft DreamSpark Premium Electronic Software Delivery Academic(Microsoft Open License	номер лицензии-42661846 от 30.08.2007) с допсоглашениями от 29.04.14 и 01.09.16 (бессрочная лицензия)
	КОМПАС-3D V16 и V17	договор № НП-16-00283 от 1.12.2016 (бессрочная лицензия)
	MathCADv.15	Сублиц.договор №39331/МОС2286 от 6.05.2013) номер лицензии-42661846 от 30.08.2007) (бессрочная лицензия)
	SimInTech	Отечественное программное обеспечение
	AdobeReader	свободно распространяемое программное обеспечение (бессрочная лицензия)
	AdobeFlashPlayer	свободно распространяемое программное обеспечение (бессрочная лицензия)
	Microsoft Visual Studio 2019	свободно распространяемое программное обеспечение (бессрочная лицензия)

Аудитория	Программное обеспечение	Информация о праве собственности (реквизиты договора, номер лицензии и т.д.)
	Python 3.7	свободно распространяемое программное обеспечение (бессрочная лицензия)
	PascalABC	свободно распространяемое программное обеспечение (бессрочная лицензия)
	AIMP	отечественное свободно распространяемое программное обеспечение (бессрочная лицензия)
	Kaspersky Endpoint Security Стандартный Educational Renewal 2 года. Band S: 150-249	Номер лицензии 2B1E-211224- 064549-2-19382 от 24.12.2021
	Kaspersky Endpoint Security Стандартный Educational Renewal 2 года. Band S: 150-249	Номер лицензии 2B1E-211224- 064549-2-19382 от 24.12.2021
	Windows 7 OLPNLAcdmc	договор №Д03 от 30.05.2012) с допсоглашениями от 29.04.14 и 01.09.16 (бессрочная лицензия)
	Zoom	Свободно распространяемое программное обеспечение (бессрочная лицензия)
№ 120б 428000, Чебоксары, ул.	Google Chrome	Свободное распространяемое программное обеспечение (бессрочная лицензия)
К.Маркса, д.60 1 этаж,	AIMP	отечественное свободно распространяемое программное обеспечение (бессрочная лицензия)
	Kaspersky Endpoint Security Стандартный Educational Renewal 2 года. Band S: 150-249	Номер лицензии 2B1E-211224- 064549-2-19382 от 24.12.2021
	Windows 7 OLPNLAcdmc	договор №Д03 от 30.05.2012) с допсоглашениями от 29.04.14 и 01.09.16 (бессрочная лицензия)
	Zoom	Свободно распространяемое программное обеспечение (бессрочная лицензия)

13. Материально-техническое обеспечение дисциплины

Тип и номер помещения	Перечень основного оборудования и технических средств обучения
Учебная аудитория для проведения учебных занятий всех видов, предусмотренных программой магистратуры, оснащенные оборудованием и техническими средствами обучения, состав которых определяется в рабочих программах дисциплин (модулей) № 2066 (г. Чебоксары, ул. К.Маркса. 60)	Оборудование: комплект мебели для учебного процесса; доска учебная; стенды Технические средства обучения: компьютерная техника
Учебная аудитория для проведения учебных занятий всех видов, предусмотренных программой магистратуры, оснащенные оборудованием и техническими средствами обучения, состав которых определяется в рабочих программах дисциплин (модулей) № 1206 (г. Чебоксары, ул. К.Маркса. 60)	Оборудование: комплект мебели для учебного процесса; доска учебная; стенды Технические средства обучения: компьютерная техника; мультимедийное оборудование (проектор, экран)

14. Методические указания для обучающегося по освоению дисциплины

Методические указания для занятий лекционного типа

В ходе лекционных занятий обучающемуся необходимо вести конспектирование учебного материала, обращать внимание на категории, формулировки, раскрывающие содержание тех или иных явлений и процессов, научные выводы и практические рекомендации.

Необходимо задавать преподавателю уточняющие вопросы с целью положений, уяснения теоретических разрешения спорных ситуаций. Целесообразно конспект делая дорабатывать свой лекции, нем соответствующие основной и записи из дополнительной литературы, рекомендованной преподавателем и предусмотренной учебной программой дисциплины.

Методические указания для занятий семинарского (практического) muna.

Практические занятия позволяют развивать у обучающегося творческое теоретическое мышление, умение самостоятельно изучать литературу, анализировать практику; учат четко формулировать мысль, вести дискуссию, то есть имеют исключительно важное значение в развитии самостоятельного мышления.

Подготовка к практическому занятию включает два этапа. На первом этапе обучающийся планирует свою самостоятельную работу, которая включает: уяснение задания на самостоятельную работу; подбор основной и дополнительной литературы; составление плана работы, в котором определяются основные пункты предстоящей подготовки. Составление плана дисциплинирует и повышает организованность в работе.

Второй этап включает непосредственную подготовку к занятию, которая начинается с изучения основной и дополнительной литературы. Особое внимание при этом необходимо обратить на содержание основных положений и выводов, объяснение явлений и фактов, уяснение практического приложения рассматриваемых теоретических вопросов. Далее следует подготовить тезисы для выступлений по всем учебным вопросам, выносимым на практическое занятие или по теме, вынесенной на дискуссию (круглый стол), продумать примеры с целью обеспечения тесной связи изучаемой темы с реальной жизнью.

Готовясь к докладу или выступлению в рамках интерактивной формы (дискуссия, круглый стол), при необходимости следует обратиться за помощью к преподавателю.

Методические указания к самостоятельной работе.

Самостоятельная работа обучающегося является основным средством овладения учебным материалом во время, свободное от обязательных учебных занятий. Самостоятельная работа обучающегося над усвоением учебного материала по учебной дисциплине может выполняться в библиотеке университета, учебных кабинетах, компьютерных классах, а также в домашних условиях. Содержание и количество самостоятельной работы обучающегося определяется учебной программой дисциплины, методическими материалами, практическими заданиями и указаниями преподавателя.

Самостоятельная работа в аудиторное время может включать:

- 1) конспектирование (составление тезисов) лекций;
- 2) выполнение контрольных работ;
- 3) решение задач;
- 4) работу со справочной и методической литературой;
- 5) работу с нормативными правовыми актами;
- 6) выступления с докладами, сообщениями на семинарских занятиях;
- 7) защиту выполненных работ;
- 8) участие в оперативном (текущем) опросе по отдельным темам изучаемой дисциплины;
- 9) участие в собеседованиях, деловых (ролевых) играх, дискуссиях, круглых столах, конференциях;
 - 10) участие в тестировании и др.

Самостоятельная работа во внеаудиторное время может состоять из:

- 1) повторения лекционного материала;
- 2) подготовки к практическим занятиям;
- 3) изучения учебной и научной литературы;

- 4) изучения нормативных правовых актов (в т.ч. в электронных базах данных);
 - 5) решения задач, и иных практических заданий
 - 6) подготовки к контрольным работам, тестированию и т.д.;
 - 7) подготовки к практическим занятиям устных докладов (сообщений);
- 8) подготовки рефератов, эссе и иных индивидуальных письменных работ по заданию преподавателя;
 - 9) выполнения курсовых работ, предусмотренных учебным планом;
 - 10) выполнения выпускных квалификационных работ и др.
- 11) выделения наиболее сложных и проблемных вопросов по изучаемой теме, получение разъяснений и рекомендаций по данным вопросам с преподавателями на консультациях.
- 12) проведения самоконтроля путем ответов на вопросы текущего контроля знаний, решения представленных в учебно-методических материалах кафедры задач, тестов, написания рефератов и эссе по отдельным вопросам изучаемой темы.

Текущий контроль осуществляется в форме устных, тестовых опросов, докладов, творческих заданий.

В случае пропусков занятий, наличия индивидуального графика обучения и для закрепления практических навыков студентам могут быть выданы типовые индивидуальные задания, которые должны быть сданы в установленный преподавателем срок.

15. Особенности реализации дисциплины для инвалидов и лиц с ограниченными возможностями здоровья

Обучение по дисциплине «Микропроцессорные системы в энергетике» инвалидов и лиц с ограниченными возможностями здоровья (далее ОВЗ) осуществляется преподавателем с учетом особенностей психофизического развития, индивидуальных возможностей и состояния здоровья таких обучающихся.

Для студентов с нарушениями опорно-двигательной функции и с OB3 по слуху предусматривается сопровождение лекций и практических занятий мультимедийными средствами, раздаточным материалом.

Для студентов с OB3 по зрению предусматривается применение технических средств усиления остаточного зрения, а также предусмотрена возможность разработки аудиоматериалов.

По дисциплине «Микропроцессорные системы в энергетике» обучение инвалидов и лиц с ограниченными возможностями здоровья может осуществляться как в аудитории, так и с использованием электронной информационно-образовательной среды, образовательного портала и электронной почты.

ЛИСТ ДОПОЛНЕНИЙ И ИЗМЕНЕНИЙ

рабочей программы дисциплины

Рабочая программа дисциплины рассмотрена, обсуждена и одобрена для исполнения в <u>2023-2024</u> учебном году на заседании кафедры, <u>протокол № 8 от «20» мая 2023г.</u>

Внесены дополнения и изменения <u>в части актуализации лицензионного</u> программного обеспечение, используемое при осуществлении образовательного процесса по данной дисциплины, а так же современных профессиональных баз данных и информационных справочных системах, актуализации электронно-библиотечных систем.

Рабочая программа дисциплины рассмотрена, обсуждена и одобрена для исполнения в <u>2024-2025</u> учебном году на заседании кафедры, <u>протокол № 8 от «20» апреля 2024г.</u>

Внесены дополнения и изменения в части актуализации лицензионного программного обеспечение, используемое при осуществлении образовательного процесса по данной дисциплины, а так же современных профессиональных баз данных и информационных справочных системах, актуализации электронно-библиотечных систем.

Рабочая программа дисциплины рассмотрена, обсуждена и одобрена для исполнения в <u>2025-2026</u> учебном году на заседании кафедры, <u>протокол № 9 от «17» мая 2025г.</u>

Внесены дополнения и изменения в части актуализации лицензионного программного обеспечение, используемое при осуществлении образовательного процесса по данной дисциплины, а так же современных профессиональных баз данных и информационных справочных системах, актуализации перечня основной и дополнительной учебной литературы, необходимой для освоения дисциплины