Документ подписан простой электронной подписью Информация о владельце:

ФИО: Агафонов Александр Викторович

Должность: лиректор фидиала. Дата подписания: 18:06:2025 13:30 На УКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Уникальный программный ключ: ЧЕБОКСАРСКИЙ ИНСТИТУТ (ФИЛИАЛ)

2539477а8есf70ф ОССКОВСКОГО ПОЛИТЕХНИЧЕСКОГО УНИВЕРСИТЕТА

Кафедра транспортно-технологических машин

Проектирование газонефтехранилищ

наименование дисциплины

Методические указания по выполнению курсового проекта

Направление подготовки	21.03.01 Нефтегазовое дело
	код и наименование направления подготовки
Направленность (профиль) подготовки	Эксплуатация и обслуживание объектов транспорта и хранения нефти, газа и продуктов переработки
Квалификация выпускника	наименование профиля подготовки бакалавр
Форма обучения	очная

Методические указания разработаны в соответствии с требованиями ФГОС ВО по направлению подготовки

Заведующая библиотекой

21.03.01 Нефтегазовое дело

Авторы:			
Чегулов Василий Владимирович,			
ктн, доцент кафедры транспортно-технологических м	ашин		
ФИО, ученая степень, ученое звание или должность, наи	именование кафедры		
Методические указания одобрены на заседании транспортно-технологических машин	и кафедры		
наименование кафедры (протокол № 08 от 15.05.2021 г.).			
Согласовано:			
Заместитель директора по УВР	Н.С. Малюткина		
Заведующий кафедрой Д.И. Федоров			
Заведующий выпускающей кафедрой Д.И. Федоров			
Начальник УМО	Т.Н. Быкова		

Т.Ю. Лисова

Чегулов В.В.

Ч 34 Проектирование газонефтехранилищ:

методические указания – Чебоксары: Политех, 2022. – 24 с.

В практикуме представлена методика выполнения курсового проекта по дисциплине Проектирование газонефтехранилищ.

Предназначено для обучающихся технических специальностей и направлений подготовки.

Оригинал-макет учебного пособия является собственностью Чебоксарского института (филиала) Московского политехнического университета и его воспроизводство в любом виде, включая электронный, без согласия собственника запрещено

ОГЛАВЛЕНИЕ

ВВЕДЕНИЕ	5
РАСЧЕТ И ПРОЕКТИРОВАНИЕ РЕЗЕРВУАРА ВЕРТИКАЛЬНОГО	
СТАЛЬНОГО	6
Методика решения	6
1. Выбор материалов для элементов стенки, днища и крыши резервуара	
2. Расчет стенки резервуара	7
3. Предварительный выбор толщин поясов стенки	10
4. Проверка стенки на прочность	11
5. Проверка стенки на устойчивость	12
6. Расчет днища вертикального стального резервуара	13
7. Конструкция и расчет покрытий резервуаров	15
ЗАДАНИЕ И ИСХОДНЫЕ ДАННЫЕ ПО ВАРИАНТАМ	23

ВВЕДЕНИЕ

Современные предприятия нефтепродуктообеспечения — это сложные комплексы инженерно-технических сооружений, связанные между собой технологическими процессами, обеспечивающими прием, хранение, транспортировку и снабжение потребителей нефтепродуктами.

Повышение эффективности предприятий нефтепродуктообеспечения достигается не только за счет улучшения технико-экономических показателей используемого оборудования, но и за счет внедрения новой техники и технологий. Выросшие требования к качеству нефтепродуктов предопределяют и условия работы предприятий нефтепродуктообеспечения, требующие принятия неординарных и экономически целесообразных решений. Выросшие требования к эксплуатационному персоналу обусловливают необходимость повышения теоретического уровня специалистов, т.е. знаний ими современных технологий и приемов, позволяющих добиться максимальной эффективности при минимуме риска нанести ущерб обслуживающему персоналу и природе.

Целью изучения дисциплины «Проектирование газонефтехранилищ» является получение студентами знаний по основам проектирования и эксплуатации объектов системы обеспечения нефтепродуктами.

Задачи изучения дисциплины:

- получить знания о современных методах проектирования предприятий по обеспечению нефтепродуктами, эксплуатации нефтебаз, АЗС и основного технологического оборудования предприятий по обеспечению нефтепродуктами;
- получить знания о научно-технической документации в области проектирования и эксплуатации предприятий по обеспечению нефтепродуктами (СНиП, ГОСТ, ВСН и др.), а также современных требований, предъявляемых к проектированию, эксплуатации, промышленной безопасности объектов предприятий по обеспечению нефтепродуктами.

РАСЧЕТ И ПРОЕКТИРОВАНИЕ РЕЗЕРВУАРА ВЕРТИКАЛЬНОГО СТАЛЬНОГО

Цель: выбрать материал резервуара, рассчитать нагрузки, действующие на резервуар, выбрать оптимальные размеры, выполнить расчет на прочность, устойчивость и опрокидывание резервуара, расчет и конструирование днища и покрытия резервуара.

Методика решения

1. Выбор материалов для элементов стенки, днища и крыши резервуара

Выбор марок сталей для элементов резервуаров зависит от ряда условий:

- района строительства (температура наиболее холодных суток);
- вместимости резервуаров;
- интенсивности эксплуатации (оборачиваемости хранимых продуктов в год);
 - степени агрессивности среды;
 - пожароопасности хранимых продуктов.

Днища и обечайку резервуара изготавливают из спокойной (полностью раскисленной) стали. Для основных конструкций применяется спокойная или полуспокойная сталь.

Немаловажным фактором, обеспечивающим надежность конструкций резервуара с учетом большого количества сварных швов, является обеспечение прочности и вязкости металла сварного соединения не ниже, чем требуется для исходного основного металла. При этом углеродный эквивалент стали с пределом текучести 390 МПа и ниже для основных элементов конструкций не должен превышать 0,43, где значение углеродного эквивалента определяется по формуле:

$$C_{_{3KB}} = C + \frac{Mn}{6} + \frac{Si}{24} + \frac{Cr}{5} + \frac{Ni}{40} + \frac{Cu}{13} + \frac{V}{14} + \frac{P}{2}$$

где C, Mn, Si, Cr, Ni, Cu, V, P - массовые доли углерода, марганца, кремния, хрома, никеля, меди, ванадия и фосфора по результатам плавочного анализа (ковшовой пробы).

Листовая сталь изготавливается толщиной 4-50 мм, шириной 1500-3000 мм, длиной 6000-12000 мм с обрезными кромками. Сталь должна поставляться с симметричным расположением поля допуска по толщине, либо с несимметричным расположением поля допуска по толщине, но имеющим постоянное предельное нижнее отклонение, равное 0,3 мм.

В соответствии с заданным объемом резервуара V_r определяется оптимальная высота по формуле: [6]

$$H_{OPT} = \sqrt{\frac{\gamma_{C1} \cdot R_{WY} \cdot \Delta}{\gamma_{f2} \cdot \rho}},$$

где γ_{C1} – коэффициент условий работы стенки резервуара; γ_{f2} – коэффициент надежности по нагрузке для гидростатического давления; R_{WY} – расчетное сопротивление сварного стыкового шва для стали ($R_{WY} = R_Y$), кг\см²; Δ – приведенная толщина стенки и кровли, см; ρ – объемный вес жидкости, кг\см³.

Затем принимается предварительная максимальная высота стенки резервуара h_{CT} и подбираются размеры листа.

Количество листов определяется по формуле:

$$N_l = \frac{h_{CT}}{h_{\text{ЛИСТА}}}$$
.

Полученное число округляется и высота стенки корректируется и назначается окончательно (H_r) .

Затем определяется радиус резервуара r₂:

$$r_2 = \sqrt{\frac{V_r}{\pi \cdot Y_r}}.$$

Назначается метод сборки резервуара из рулонных заготовок или полистовой. В случае принятия сборки резервуара из рулонных заготовок определяется длина рулона:

$$L_p = 2 \cdot \pi \cdot r_2 + \tau,$$

где $\tau - 0.2$ м.

Затем определяется количество листов в рулоне:

$$N_{\text{листов}} = \frac{L_p}{l}$$
,

где 1 – длина одного листа с учетом минусового допуска.

В случае, если один из листов будет иметь длину менее 0,51, следует округлить его длину до 0,751.

Производим корректировку длины рулона:

$$L_p = N_{\text{листов}}^{\text{скор}} \cdot l.$$

Затем уточняем значение радиуса резервуара ${
m r}_2 = \frac{L_p - 0.2}{2 \cdot \pi}.$

$$r_2 = \frac{L_p - 0.2}{2 \cdot \pi}.$$

2. Расчет стенки резервуара

Проверка несущей способности стенки резервуара должна включать в себя:

- расчёт прочности при статическом нагружении в условиях эксплуатации и гидроиспытаний;
 - проверка устойчивости при статическом нагружении;

- проверка прочности и устойчивости при сейсмических воздействиях (в сейсмоопасных районах);
- расчёт малоцикловой прочности (при необходимости определения срока службы резервуара).

Основной нагрузкой при расчёте стенки на прочность является гидростатическое давление, которое, совместно с избыточным давлением, вызывает появление в стенке кольцевых растягивающих напряжений. Таким образом, при определении кольцевых напряжений рассматривают следующие загружения:

а) нагрузка от гидростатического давления жидкости в расчётном уровне каждого пояса P_{κ} (к H/M^2):

$$P_{\mathsf{x}} = \gamma_{f\mathsf{x}} \cdot g \cdot \rho \cdot (H - z),$$

где $\gamma_{fж}$ — коэффициент надёжности по нагрузке, принимаемый для гидростатического давления равным 1; z — расстояние от дна до нижней кромки расчётного пояса.

Обычно высота налива продукта определяется технологическим регламентом эксплуатации резервуара и составляет 90-95 % высоты стенки.

б) нагрузка от избыточного давления $P_{\text{и}}$ (к H/M^2):

$$P_{\mu} = \gamma_{f\mu} \cdot P_{\mu n}$$

где γ_{fu} – коэффициент надёжности по нагрузке для избыточного давления, принимаемый равным 1,2; P_{un} – нормативное значение избыточного давления, принимаемое для резервуаров низкого давления равным 2 к H/m^2 .

При расчёте стенки резервуара с понтоном избыточное давление отсутствует. Однако при этом учитывается нагрузка от собственного веса понтона, которая может быть определена после назначения его конструкции и определения толщин элементов. Кроме кольцевых напряжений в стенке возникают и меридиональные напряжения (осевые) от вертикальных нагрузок, к которым относят:

а) собственный вес покрытия, площадок ограждения и стационарного оборудования $G_O(\kappa H)$:

$$G_O = \gamma_{fg} \cdot G_{On} \cdot \pi \cdot r^2,$$

где $\gamma_{\rm fg}$ — коэффициент надёжности по нагрузке для собственного веса металло-конструкций, принимаемый равным 1,05; $G_{\rm On}$ — нормативное значение распределённой нагрузки от веса покрытия, площадок ограждения и стационарного оборудования, приближенно может быть определено по обобщенным показателям [9] в зависимости от объёма резервуара (табл. 1).

Таблица 1 – Вес покрытия, площадок ограждения и оборудования

	1 / 1	<u> </u>	1	1 2	1	
Объем резервуара V, м ³	1000	5000	10000	20000	30000	50000
Вес крыши и оборудовнаия G_{On} , к H/M^2	0,30	0,35	0,45	0,55	0,60	0,65

Нагрузка от собственного веса приведена приближённой, и зависит не только от объёма резервуара, но и от типа стационарной крыши. По результатам конструктивного расчёта крыши данная нагрузка может быть уточнена и

принята в дальнейшем для определения более точных значений меридиональных напряжений.

б) вес металлоконструкций выше расчётной точки G_{M} (кН):

$$G_M = \gamma_{fg} \cdot 2\pi \cdot r \cdot \rho_M \cdot g \cdot H_{\text{ct.}i} \cdot \sum t_i$$

где ρ_{M} – плотность стали; $H_{\text{ст.i}}$ – высота стенки выше рассматриваемого уровня; t_{i} – номинальная толщина i-го пояса стенки.

Вес стенки определяется для каждого пояса.

в) вес снега S (кH/м²):

$$S = S_g \cdot \mu$$
,

где S_g — расчётное значение веса снегового покрова на 1 м² горизонтальной поверхности земли (по табл. 2); μ =1,0 — коэффициент перехода от веса снегового покрова земли к снеговой нагрузке на покрытие.

Таблица 2 – расчётное значение веса снегового покрова на 1 м² горизонтальной поверхности земли

Снеговые I II IIIIV VI VII VIII районы 0,8 1.2 1.8 2.4 3,2 S_g , к Πa 4,0 4,8 5,6

При расчете на устойчивость рассматривается пустой резервуар, в котором отсутствует гидростатическое давление продукта и избыточное давление, и рассматриваются следующие нагрузки:

а) нагрузка от относительного разрежения (вакуум) $P_{\text{вак}}$ (к H/M^2):

$$P_{\text{вак}} = \gamma_{f \text{вак}} \cdot P_{\text{вак}n},$$

где $\gamma_{\text{fвак}}$ — коэффициент надёжности по нагрузке для вакуума, принимаемый равным 1,2; $P_{\text{вакn}}$ — нормативное значение вакуума, принимаемое для резервуаров низкого давления равным 0,25 кH/м².

б) ветровая нагрузка на стенку (кH/м²):

$$P_{\text{BeT}} = \gamma_{f \text{BeT}} \cdot w_0 \cdot k \cdot c_{e1},$$

где $\gamma_{f\text{вет}}$ — коэффициент надёжности по нагрузке для ветровой нагрузки, принимаемый при расчете на устойчивость равным 0,5; w_0 — нормативное значение ветрового давления (по табл. 4); k — коэффициент, учитывающий изменение ветрового давления по высоте (по табл. 5); c_{e1} — аэродинамический коэффициент, равный 0,5 при расчете на устойчивость.

в) ветровая нагрузка на покрытие (кH/м²):

$$P_W^{\text{ot}} = \gamma_{f\text{Bet}} \cdot w_0 \cdot c_{e2},$$

где c_{e2} - аэродинамический коэффициент, определяемый по таблице 3.

Таблица 3 – Аэродинамический коэффициент

	тастица	е породини	mir recitini itess	рфицион	
H/2R	0,17	0,25	0,50	1,00	2,00
Ci	0,50	0,55	0,70	0,80	0,90

Таблица 4 – Нормативное значение ветрового давления

Ветровые районы	Ia	I	II	III	IV	V	VI	VII
w ₀ , кПа	0,17	0,23	0,30	0,38	0,48	0,60	0,73	0,85

Таблица 5 – Коэффициент, учитывающий изменение ветрового давления по высоте

Dyvoomo д. м	Коэфф	рициент k для типов мес	тности
Высота z, м	A	В	С
≥5	0,75	0,5	0,4
10	1,0	0,65	0,4
20	1,25	0,85	0,55
40	1,5	1,1	0,8
60	1,7	1,3	1,0
80	1,85	1,45	1,15
100	2,0	1,6	1,25
150	2,25	1,9	1,55
200	2,45	2,1	1,8
250	2,65	2,3	2,0
300	2,75	2,5	2,2
350	2,75	2,75	2,35
≥480	2,75	2,75	2,75

3. Предварительный выбор толщин поясов стенки

Предварительный выбор номинальных толщин поясов производится с помощью расчёта на эксплуатационные нагрузки, на нагрузку гидроиспытаний и по конструктивным требованиям.

Минимальная расчётная толщина стенки в каждом поясе для условий эксплуатации t_e рассчитывается по формуле:

$$t_e = \frac{g \cdot \rho \cdot (H - z) \cdot r}{R_y \cdot \gamma_c},$$

где γ_c — коэффициент условий работы, равный 0,7 для нижнего пояса, равный 0,8 для всех остальных поясов; R_y — расчётное сопротивление материала. Для резервуаров до 5000 м³ включительно R_y = 355 МПа, для резервуаров от 5000 м³ R_y = 335 МПа.

Минимальная расчётная толщина стенки в каждом поясе для условий гидравлических испытаний $t_{\rm g}$ рассчитывается по формуле:

$$t_g = \frac{g \cdot \rho_B \cdot (H - z) \cdot r}{R_y \cdot \gamma_c},$$

где ρ_B — плотность используемой при гидроиспытаниях воды; H — высота налива воды при гидроиспытаниях; $\gamma_c = 0.9$ — коэффициент условий работы при гидроиспытаниях для всех поясов одинаков.

По конструктивным требованиям толщина t_k определяется по таблице 6.

Таблица 6 – Минимальная конструктивно необходимая толщина t_k, мм

Диаметр	Рулонное и	Полист	
резервуара D, м	Стационарная крыша	Плавающая крыша	овое исполнение
D < 16	4	4	5
16 < D < 25	6	5	7
25 < D < 35	8	6	9
D > 35	10	8	10

Номинальная толщина t каждого пояса стенки выбирается из сортаментного ряда следующим образом:

$$t - \Delta \ge \max(t_e + c, t_g, t_k),$$

где Δ – минусовой допуск на прокат, Δ = 0,5; с – припуск на коррозию.

Величина припуска на коррозию задаётся заказчиком и зависит от агрессивности хранимого в резервуаре продукта и нормативного срока его эксплуатации. Так, например, для среднеагрессивной среды со средней скоростью коррозии металла до $0.05\,$ мм/год и нормативным сроком эксплуатации $20\,$ лет величина припуска на коррозию составит $0.05\times20=1\,$ мм.

Поверочный расчёт на прочность и расчёт на устойчивость проводится для расчетной толщины t_p поясов, которая определяется по формуле:

$$t_p = t - \Delta - c$$
.

4. Проверка стенки на прочность

Проверка прочности стенки выполняется по приведенным и по кольцевым напряжениям:

$$\sqrt{\sigma_1^2 - \sigma_1 \cdot \sigma_2 + \sigma_2^2} = R_y \cdot \frac{\gamma_c}{\gamma_n},$$

$$\sigma_2 \le R_y \cdot \frac{\gamma_c}{\gamma_n},$$

где γ_n - коэффициент надежности по назначению, для резервуара III класса $\gamma_n=1; \, \sigma_1$ - меридиональное напряжение; σ_2 - кольцевое напряжение.

Кольцевые напряжения 2 вычисляются для нижних точек поясов по формуле:

$$\sigma_2 = \frac{(g \cdot \rho \cdot (H-z) + 1, 2P_{un}) \cdot r}{t_p} = \frac{(P_{\mathsf{x}} + P_u) \cdot r}{t_p}$$

Меридиональные напряжения σ_1 , с учётом коэффициентов надёжности по нагрузке и коэффициентов для основного сочетания нагрузок вычисляются для нижних точек поясов по формуле:

нагрузке и коэффициентов для основного сочетания нагрузок нижних точек поясов по формуле:
$$\sigma_1 = \frac{G_M + 0.95G_0}{2\pi \cdot r \cdot t_p} + \frac{(0.9 \cdot S - 0.95 \cdot P_u) \cdot r}{2 \cdot t_p},$$

где 0,95 — коэффициент сочетания для временных длительных нагрузок в основном сочетании (вес стационарного оборудования, нагрузка от веса теплоизоляции, избыточное давление); 0,9 — коэффициент сочетания для временных кратковременных нагрузок в основном сочетании (снеговая нагрузка).

5. Проверка стенки на устойчивость

Проверка устойчивости стенки пустого резервуара осуществляется по формуле:

 $\frac{\sigma_1}{\sigma_{cr1}} + \frac{\sigma_2}{\sigma_{cr2}} \le 1,$

где σ_{cr1} – меридиональные критические напряжения; σ_{cr2} – кольцевые критические напряжения; 1 - коэффициент условия работы при расчете на устойчивость.

При невыполнении условия для обеспечения устойчивости стенки можно увеличить толщину верхних поясов или установить промежуточные кольца жесткости, или и то и другое вместе.

При расчете на устойчивость кольцевое напряжение σ_2 зависит от $P_{\text{вак}}$ и эквивалентного ветрового внешнего давления $P_{\text{вет}}$: $\sigma_2 = \frac{0.95 P_{\text{вак}} + 0.9 P_{\text{вет}}}{t_n^{min}},$

$$\sigma_2 = \frac{0.95P_{\text{BAK}} + 0.9P_{\text{BeT}}}{t_p^{min}},$$

где 0,95 - коэффициент сочетания для временных длительных нагрузок в основном сочетании (относительное разрежение в газовом пространстве резервуара); 0,9 – коэффициент сочетания для временных кратковременных нагрузок в основном сочетании (ветровая нагрузка); t_p^{min} – расчетная толщина самого тонкого пояса.

Меридиональное напряжение вычисляется для нижней кромки участка стенки по формуле:

$$\sigma_1 = \frac{G_M + 0.95(G_0 + G_y)}{2\pi \cdot r \cdot t_p} + \frac{(0.9 \cdot S - 0.95 \cdot P_u) \cdot r}{2 \cdot t_p},$$

Первое (меридиональное) критическое напряжение вычисляется по формуле:

$$\sigma_{cr1} = C \cdot E \cdot \frac{t_p^{min}}{r},$$

где С – коэффициент, вычисляемый по формулам:

$$C=0.04+40rac{t_p^{min}}{r}$$
 при $400 \leq rac{r}{t_p^{min}} < 1220,$ $C=0.085-0.01rac{r}{t_p^{min} \cdot 10^5}$ при $1220 \leq rac{r}{t_p^{min}} < 2500,$

где Е – модуль упругости прокатной стали и стальных отливок.

Второе (кольцевое) критическое напряжение вычисляется по формуле:

$$\sigma_{cr2} = 0.55 \cdot E \cdot \left(\frac{r}{H_r}\right) \cdot \left(\frac{t_p^{min}}{r}\right)^{1.5},$$

где H_r – редуцированная высота резервуара. Для резервуаров со стационарной крышей и с постоянной толщиной поясов стенки редуцированная высота равна

полной высоте стенки резервуара H_{cr} , при переменной толщине поясов стенки H_r вычисляется по формуле:

$$H_r = \sum h_i \left(\frac{t_p^{min}}{t_{pi}}\right)^{2,5}$$
 ,

где $\mathbf{h_i}$ – высота і-го пояса; t_{pi} – расчётная толщина листа і-го пояса.

6. Расчет днища вертикального стального резервуара

Основным назначением днища является обеспечение герметичности резервуара. При правильном устройстве основания, качественном изготовлении, транспортировании и монтаже каких-либо существенных напряжений от внешней нагрузки в днище не возникает. Поэтому толщина листов днища принимается только исходя из условия сохранения его целостности на планируемый период эксплуатации. Исключение составляет периферийная часть днища. Здесь в зоне соединения днища с цилиндрической стенкой при заполнении резервуара нефтепродуктом имеет место моментное напряженное состояние с соответствующими изгибными напряжениями.

Днища резервуаров объемом V ≥ 2000 м³ имеют центральную часть и утолщенную кольцевую окрайку. Толщина листов центральной части $t_{\rm дh}^4 \geq 4$ мм, толщина листов окрайки зависит от толщины нижнего пояса резервуара.

На окрайки непосредственно опирается цилиндрическая стенка резервуара, образуя узел соединения стенки с днищем. Принятое значение толщины проверяется расчетом на прочность по изгибным напряжениям, возникающим в месте соединения окраек днища с цилиндрической стенкой резервуара.

Наружный контур окраек должен иметь вид окружности и выступать за внешнюю поверхность стенки резервуара не менее чем на 50 мм и не более 100 мм.

Для резервуаров объемом от 2 до $10~{\rm Tыc.}~{\rm M}^3$ применяются днища с обычными окраинами.

Для листов окраек применяется та же марка стали, что и для нижнего пояса резервуара или соответствующего ей класса прочности при условии обеспечения их свариваемости. С внешней стороны кольцо из листов окраек должно быть круговой формы. Внутренняя граница окраек может иметь форму правильного многоугольника с числом сторон, равным числу листов окрайки.

Радиальная ширина окрайки должна обеспечивать расстояние между внутренней поверхностью стенки и швом приварки центральной части днища не менее 300 мм для резервуаров объемом до 5000 м³ и 600 мм для резервуаров объемом более 5000 м³, но не менее величины, определяемой соотношением:

$$L_0 = 26,22\sqrt{r \cdot t}.$$

Наружный контур окраек должен иметь вид окружности и выступать за внешнюю поверхность стенки резервуара не менее чем на 50 мм и не более 100 мм.

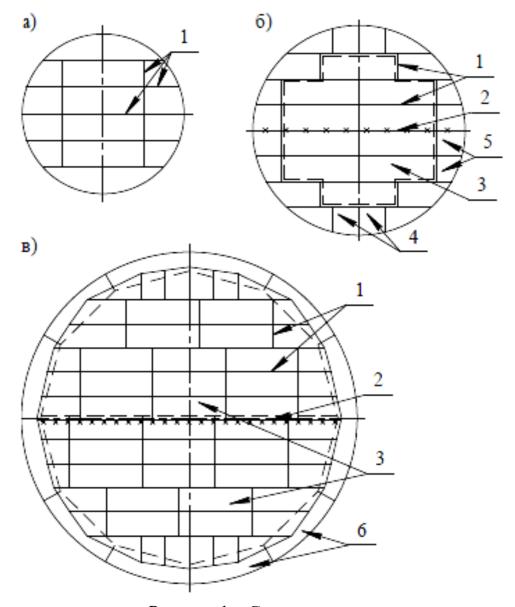


Рисунок 1 – Схема днища

- a-из листов одинаковой толщины; б с прямоугольными окрайками; b- с сегментными окрайками;
- 1 заводские швы, 2 монтажные швы, 3 листы центральной части днища, 4 прямоугольные окрайки поперечные; 5 прямоугольные окрайки продольные, 6 сегментные окрайки

Размеры окраечного кольца днища назначаются из условия прочности узла соединения стенки с днищем с учетом деформированности листа окрайки днища.

Номинальная толщина кольцевых окраек должна быть не менее величины, определяемой по формуле:

$$t_b = 0.77 \cdot t_1.$$

Центральная часть днища выполняется в виде отдельных листов или полотнищ. Ее форма по периметру принимается исходя из условия обеспечения величины нахлеста центральной части днища на кольцо окраек в соответствии с

таблицей 4. Номинальная толщина листов центральной части днища должны быть не менее 4 мм, исключая припуск на коррозию.

7. Конструкция и расчет покрытий резервуаров

Все крыши по периметру опираются на стенку резервуара с использованием кольцевого элемента жесткости. Минимальный размер кольцевого уголка должен быть не менее 63×5 мм. Минимальная толщина элементов принимается равной 4 мм с учетом надбавки на коррозию в зависимости от условий эксплуатации, срока службы и скорости коррозии.

Стальная самонесущая бескаркасная коническая крыша представляет собой гладкую коническую оболочку, неподкрепленную радиальными ребрами жесткости. Геометрические параметры крыши должны удовлетворять требованиям:

- максимальный диаметр крыши в плане 12,5 м;
- минимальный угол наклона образующей крыши к горизонтальной поверхности должен составлять 15°, максимальный угол наклона 30°.

Номинальная толщина оболочки крыши должна определяться расчетом на устойчивость и должна быть не менее 4 мм, и не более 7 мм. При недостаточной несущей способности (при номинальной толщине более 7 мм) подкрепляется кольцевыми ребрами жесткости, которые устанавливаются с наружной стороны. Оболочка крыши изготавливается в виде полотнища из одной или нескольких частей.

Стальная самонесущая бескаркасная сферическая крыша представляет собой сферическую оболочку. Радиус кривизны крыши должен находиться в пределах от 0,8 до 1,2 диаметра стенки резервуара. Диапазон применения резервуаров до 5000 м³ – с диаметром не более 25 м. Номинальная толщина оболочки крыши определяется расчетом на прочность и устойчивость, но должна быть не менее 5мм. Поверхность сферической крыши может быть выполнена из лепестков двоякой кривизны (вальцованных в меридиональном и кольцевом направлении), а также имеющих кривизну только в меридиональном направлении.

Стальная каркасная коническая крыша устанавливается на резервуары диаметром от 10 до 25 м. Угол наклона образующей крыши к горизонтальной поверхности выполняется с уклоном от 1:12 (4,76°) до 1:6 (9,46°). Крепление настила крыши по периметру осуществляется через обвязочный элемент жесткости. Конструкция крыши выполняется в следующих вариантах:

- в виде щитов заводского изготовления, состоящих из соединенных между собой элементов каркаса и приваренного к ним настила;
- в виде отдельных элементов каркаса и настила, привариваемого только по периметру крыши с дополнительными связями жесткости, располагаемыми в плоскости каркаса, и количеством элементов не менее двух.

Стальная каркасная купольная крыша представляет собой радиально-кольцевую конструкцию, образующую сферическую поверхность и рекомен-

дуются к применению для резервуаров диаметром свыше 25 до 50 м включительно. Геометрические параметры крыши следующие:

- радиус кривизны сферической поверхности крыши должен быть в пределах от 0,8 до 1,5 диаметра резервуара;
 - номинальная толщина настила не менее 5 мм.

Конструкция стальных каркасных купольных крыш выполняется в следующих вариантах:

- в виде щитов заводского изготовления, состоящих из соединенных между собой элементов каркаса и приваренного к ним настила;
- в виде отдельных элементов каркаса и настила, привариваемого только по периметру крыши с дополнительными связями жесткости. Количество секторов определяется расчетом и должно быть не менее четырех.

Настил крыш может быть выполнен из отдельных листов, крупногабаритных карт, рулонированных полотнищ. Крыша опирается на стенку резервуара с помощью опорного кольца или усиливающего кольца на верхнем утолщенном поясе стенки под углом равным углу наклона крыши.

Предельно допустимые отклонения размеров и формы смонтированной крыши резервуара представлены в таблице 7.

Таблица 7 – Предельно допустимые отклонения размеров и формы крыши

тасяща / тредельно допустимые отка	Предельные отклонения при диаметре			
Цанионаронна напоматрар		резерву	ара, мм	
Наименование параметров	До 12 м	12-25 м	25-40 м	Свыше 40 м
Отметка верха конических	±30		±50	
и сферических крыш	±30	±30		
Разность отметок смежных узлов верха ради-				
альных балок и ферм:	20			
-в зоне сопряжения со стенкой;	20			
-в зоне сопряжения с центральным щи-				
TOM;	,_			
- в зоне стыковки радиальных балок сфе-	15			
рических крыш.				
Отклонение от проектного радиуса сферических				
крыш. Просвет между шаблоном	5			
и гнутой поверхностью				

Элементы и узлы крыши должны быть спроектированы таким образом, чтобы максимальные усилия и деформации в них не превышали предельных значений по прочности и устойчивости для всех расчетных нагрузок и их сочетаний. При расчете учитывается первое основное сочетание нагрузок, которые действуют на крышу «сверху вниз»:

- от собственного веса элементов крыши;
- от веса стационарного оборудования и площадок обслуживания на крыше;
 - от собственного веса теплоизоляции на крыше;

- от веса снегового покрова при симметричном и несимметричном распределении снега на крыше;
- от внутреннего разрежения в газовоздушном пространстве резервуара с коэффициентом надежности по нагрузке γt.

В резервуарах, работающих с избыточным внутренним давлением, учитывается второе основное сочетание нагрузок, в котором участвуют:

- нагрузки, действующие на крышу «сверху вниз» и принимаемые с минимальными расчетными значениями:
 - от собственного веса элементов крыши;
 - от веса стационарного оборудования на крыше;
 - от собственного веса теплоизоляции на крыше,
- нагрузки, действующие на крышу «снизу вверх», и принимаемые с максимальными расчетными значениями:
- от избыточного давления с коэффициентом надежности по нагрузке γ_f равным 1,2;
 - от отрицательного давления ветра.

При проверке несущей способности элементов крыши учитывается коэффициент надежности по назначению γ_c . Коэффициент условий работы γ_c при расчете элементов крыши принимается равный 0,9.

В каркасных крышах обычного (не взрывозащищенного) исполнения элементы каркаса необходимо проверить на прочность при действии нагрузок основного сочетания. Учитывается совместная работа элементов каркаса и листового настила.

В расчетах бескаркасных стационарных крыш расчетное значение толщины настила определяется из условия устойчивости формы оболочки при первом основном сочетании нагрузок. Узел сопряжения крыши рассчитывается на прочность при действии кольцевого растягивающего усилия, возникающего от нагрузок первого основного сочетания.

В резервуарах, работающих с избыточным давлением, узел сопряжения крыши со стенкой проверяется на устойчивость в случае действия кольцевого сжимающего усилия, возникающего от нагрузок второго основного сочетания.

В расчетное сечение узла сопряжения крыши со стенкой необходимо включать кольцевой элемент жесткости, а также прилегающие участки крыши и стенки.

При расчете каркасных стационарных крыш обычного исполнения элементы каркаса должны быть проверены на прочность при действии нагрузок основного сочетания. В расчетах следует учитывать совместную работу элементов каркаса и листового настила. Проверка несущей способности узла сопряжения крыши со стенкой производится аналогично расчетам бескаркасной крыши.

В каркасных крышах взрывозащищенного исполнения элементы каркаса проверяют на прочность и устойчивость при действии нагрузок первого и второго основных сочетаний. Листовой настил не включается в расчетную схему, но учитывается в постоянной нагрузке от собственного веса элементов крыши.

Проверка несущей способности узла сопряжения крыши со стенкой производится аналогично расчетам бескаркасной крыши.

Основные положения расчетов стационарных крыш предполагают, что номинальная толщина самонесущей конической крыши определяется из условия устойчивости оболочки

$$t_{ro} = 142 \frac{r}{\sin \alpha} \sqrt{\frac{p_r}{E}}, \text{MM},$$

где α — угол наклона конической крыши к горизонтальной поверхности в градусах.

Расчетная нагрузка на крышу, кПа:

$$p_r = \frac{1,05G_r + 0,95(1,05G_{ro} + 1,3G_{ri})}{\pi \cdot r^2} + 0,9S_g + 0,95 \cdot 1,2 \cdot p_{vak}.$$

При расчете узла сопряжения крыши и стенки в расчетное сечение включается кольцевой элемент жесткости, а также прилегающие участки крыши и стенки.

Узел сопряжения крыши со стенкой рассчитывается на прочность при действии кольцевого растягивающего усилия. При этом размеры поперечного сечения должны удовлетворять условиям

$$A \ge \frac{p_r \cdot r}{0.2 \cdot R_y \cdot tg\alpha'}$$

где А – выделенная площадь поперечного сечения уторного узла крыши.

Размеры включенных в расчет участков стенки и настила крыши определяются

$$L_s = 1,897\sqrt{r \cdot t},$$

$$L_r = 1,897\sqrt{\frac{r \cdot t}{\sin \alpha}},$$

где L_s – размер участка стенки; L_r – размер участка настила; t_{ro} – номинальная толщина настила самонесущей конической крыши.

В резервуарах, работающих с внутренним избыточным давлением, узел сопряжения крыши со стенкой проверяется на устойчивость в случае действия кольцевого сжимающего усилия. При этом размеры поперечного сечения должны обеспечивать выполнение условия

$$J_y \ge \frac{r^4 \cdot 10^5}{6 \cdot E \cdot tg\alpha} \cdot \left[0.95 \cdot 1.2p_u - \frac{G_r + 0.95(G_{ro} + G_{ri})}{\pi \cdot r^2} \right],$$

где J_y — момент инерции расчетного поперечного сечения относительно вертикальной оси «y-y», совпадающей с осью стенки (рис. 2).

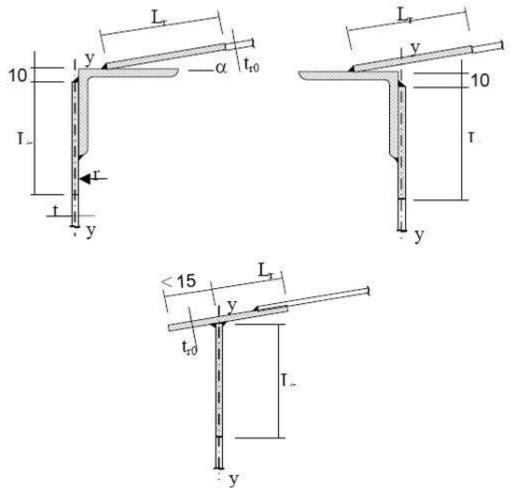


Рисунок 2 – Соединения конической крыши со стенкой

Минимальная расчетная толщина полотна t_k конической крыши по условию устойчивости без припуска на коррозию определяется по формуле $t_k = 4{,}48 \cdot \left(\frac{p}{E}\right)^{0,5} \cdot \frac{r}{sin\alpha'},$

$$t_k = 4.48 \cdot \left(\frac{p}{E}\right)^{0.5} \cdot \frac{r}{\sin\alpha'}$$

где р – расчетная нагрузка, кг/м 2 ; E – модуль упругости стали, МПа; α – угол крыши с горизонтальной плоскостью, в градусах.

Расчетная нагрузка определяется по формуле

$$p = 1.05g_m + 0.95 \cdot 1.2 \cdot g_v + 0.9 \cdot 1.6 \cdot \mu \cdot s + 0.95 \cdot 1.2 \cdot p_{\text{Bak}}$$

 $p=1,05g_m+0,95\cdot 1,2\cdot g_y+0,9\cdot 1,6\cdot \mu\cdot s+0,95\cdot 1,2\cdot p_{\text{вак}},$ где g_m – вес 1 м² листа крыши; g_y – вес 1 м² утеплителя; S - полное нормативное значение снеговой нагрузки, Па; рвак - величина относительного разряжения в резервуаре под крышей, Па.

Формула применяется при $\alpha \le 30^{\circ}$ и при выполнении условия $\frac{r}{t_k \cdot sin\alpha} \ge 274.$

$$\frac{r}{t_k \cdot \sin \alpha} \ge 274.$$

Условие проверяется после вычисления первого приближения для t_k. Так как расчетная нагрузка зависит от неизвестной толщины t_k, в качестве начального приближения может быть принята минимальная номинальная толщина, равная 4 мм с учетом припуска на коррозию.

Полное нормативное значение снеговой нагрузки определяем по формуле:

$$s = s_0 \cdot \mu$$
,

где s_0 - нормативное значение веса снегового покрова на 1 м 2 горизонтальной поверхности земли; и – коэффициент перехода от веса снегового покрова земли к снеговой нагрузке на покрытие.

Массу конструкции определяем по формуле

$$M_k = L_{ok} \cdot H \cdot t_{ct} \cdot \rho_{ct}.$$

Узел крепления крыши к верху стенки может быть выполнен по одному из вариантов, представленных на рисунке 3 и рассчитывается на кольцевое растягивающее усилие N_k , под углом α к горизонту по формуле:

$$N_k = \frac{p \cdot r^2}{2sin\alpha}.$$

У резервуара, работающего с избыточным внутренним давлением, узел крепления крыши к верху стенки рассчитывается на кольцевое сжимающее усилие:

$$N_k = \frac{\left[p_{\text{M36}} - 0.9(g_m + g_y)\right] \cdot r}{2sin\alpha}.$$

Деформации не должны превышать допускаемые значения:
$$f = 0.00652 \frac{g \cdot l^4}{E \cdot l} \leq \frac{1}{250} \cdot l,$$

где I - момент инерции радиального прогона с учетом толщины участка настила, который приварен к верхней полке прогона; 1 - длина окружности покрытия, M.

Выразив из формулы значение I, получаем:

$$I = \frac{0,00652 \cdot g \cdot l^4 \cdot 250}{l \cdot E}.$$

Следовательно, подставив І в неравенство, получаем, что условие выполняется.

Элементы и узлы каркасной крыши проектируются с условием, чтобы максимальные усилия и деформации в них не превышали предельных значений по прочности и устойчивости, регламентированных СНиП. Каркасные крыши представляют собой систему радиальных и кольцевых балок. Количество радиальных балок n_r определяется по конструктивным соображениям с учетом неравенства

$$n_r \ge \frac{\pi \cdot D}{1.8}$$
.

Результаты округляются до числа, кратного четырем.

Расчет крыш производить с использованием метода конечных элементов. Расчетная схема должна включать все несущие стержневые (каркас) и пластинчатые элементы (настил), предусмотренные конструкцией. Если листы крыши не приварены к каркасу, то в расчетную схему крыши не включаются, но учитываются в весовых характеристиках. Для каркасных крыш щитового исполнения (с приваренным к каркасу настилом) пластинчатые элементы допускается включать в расчетную схему на основе моментной теории.

Для каркасных взрывозащищенных крыш должны выполняться условия:

- D ≥ 15 m;
- D ≥9,46° (уклон крыши меньше или равен 1:6);
- крыша должна крепиться к опорному уголку односторонним угловым швом с катетом не более 5 мм;
 - конструкция узла сопряжения стенки и крыши должна правилам;
 - площадь сечения должна удовлетворять неравенству

$$A \leq \frac{(G_s + G_r - G_{r1}) + 0.95(G_{so} + G_{ro} + G_{si} + G_{ri})}{0.2\pi \cdot R_{\nu} \cdot tg\alpha}.$$

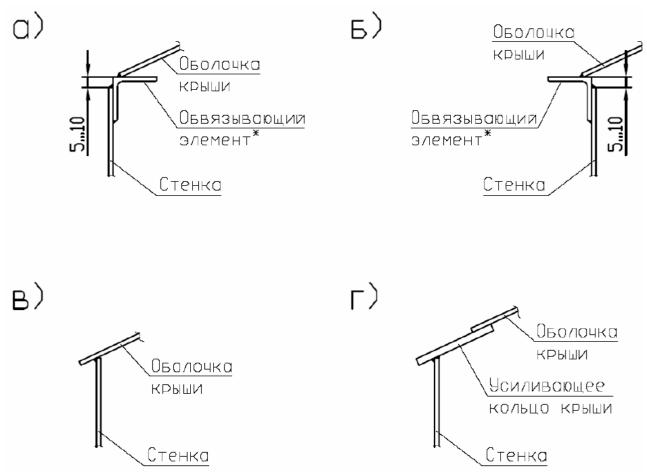
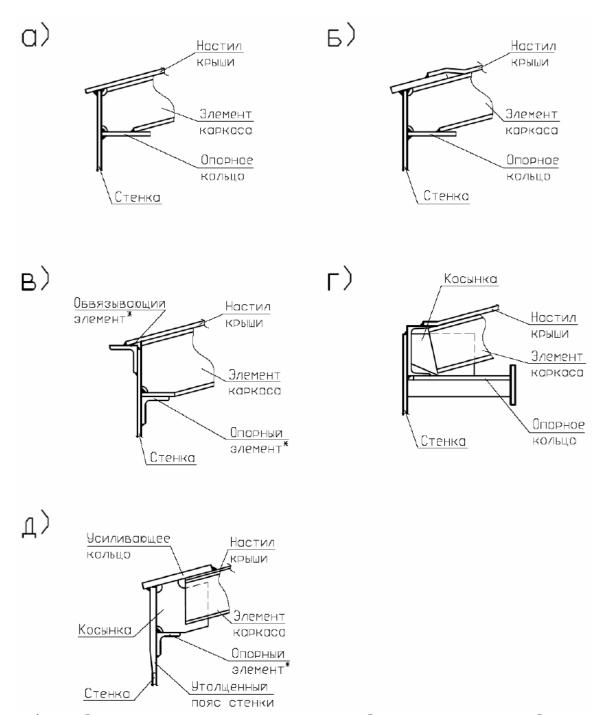



Рисунок 3 - Узел сопряжения самонесущих конических и купольных крыш со стенкой резервуара

^{* -} для обвязывающего элемента в качестве примера изображена сталь угловая равнобокая.

Рисунок 4 - Узел сопряжения каркасных конических и сферических крыш со стенкой резервуара

ЗАДАНИЕ И ИСХОДНЫЕ ДАННЫЕ ПО ВАРИАНТАМ

Проектирование вертикального стального резервуара

Подобрать материал и определить оптимальные размеры резервуара. Рассчитать стенку резервуара на прочность и устойчивость, рассчитать днище и крышу. Номер варианта соответствует номеру в списке группы.

Таблица 8 – Исходные данные

_	таолица о – исходиме д	<u>taminble</u>
Номер варианта	Объем резервуара, м ³	Вид нефтепролукта
1	1000	Бензин АИ-92
2	2000	Бензин АИ-95
3	3000	Бензин АИ-98
4	5000	Дизельное топливо ДЛ
5	10000	Дизельное топливо ДЗ
6	20000	Керосин ТС-1
7	30000	Нефть
8	40000	Топочный мазут 100
9	50000	Бензин АИ-92
10	1000	Бензин АИ-95
11	2000	Бензин АИ-98
12	3000	Дизельное топливо ДЛ
13	5000	Дизельное топливо ДЗ
14	10000	Керосин ТС-1
15	20000	Нефть
16	30000	Топочный мазут 100
17	40000	Бензин АИ-92
18	50000	Бензин АИ-95
19	1000	Бензин АИ-98
20	2000	Дизельное топливо ДЛ
21	3000	Дизельное топливо ДЗ
22	5000	Керосин ТС-1
23	10000	Нефть
24	20000	Топочный мазут 100
25	30000	Бензин АИ-92

Недостающие данные принимаются по нормативным источникам.

Список литературы

Основная литература

1. Марон, В.И. Гидравлика двухфазных потоков в трубопроводах [Электронный ресурс] : учеб. пособие — Электрон. дан. — Санкт-Петербург : Лань, 2012. — 256 с. — Режим доступа: https://e.lanbook.com/reader/book/3189/#1. — Загл. с экрана.

Дополнительная литература

- 2. Крец, В.Г. Машины и оборудование газонефтепроводов [Электронный ресурс] : учеб. пособие / В.Г. Крец, А.В. Рудаченко, В.А. Шмурыгин. Электрон. дан. Санкт-Петербург : Лань, 2016. 376 с. Режим доступа: https://e.lanbook.com/reader/book/81563/#1. Загл. с экрана.
- 3. Земенков Ю. Д. Справочник инженера по эксплуатации нефтегазопроводов и продуктопроводов [Электронный ресурс] : справочник. М. : Инфра-Инженерия, 2006.-928 с. Режим доступа: http://biblioclub.ru/index.php? page=book&id=70512

Периодика

4. Нефтегазовое дело [Электронный ресурс] : электронный научный журнал / Уфимский государственный нефтяной технический университет. — Электрон.журн. — Уфа : УГНТУ. — Режим доступа : https://e.lanbook.com/journal/2356#journal_name

Приложение 1 Образец заявления студента на курсовой проект

Заведующему кафедрой транспортно-

	энергетических систем Чебоксарского института (филиала) Московского политехнического университета			
	ступецт	ra		
		ra		
	заявле			
Прошу закрепить «				
по дисциплине «				».
и назначить руководителем				
Студент(подпис		/	/	
(подпис	ъ)	(ФИО студента	a)	(дата)
Руководитель	сь)	/	/	(дата)
Заведующий кафедрой	(подпись)	/	рой)	(дата)

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕ-РАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «МОСКОВСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» ЧЕБОКСАРСКИЙ ИН-СТИТУТ (ФИЛИАЛ) МОСКОВСКОГО ПОЛИТЕХНИЧЕСКОГО УНИВЕРСИТЕТА

Кафедра транспортно-энергетические системы

КУРСОВОЙ ПРОЕКТ

по дисциплине «Проектирование газонефтехранилищ»

	Наименование темы
Рег.номер	Выполнил:
	студент курса, группы
	формы обучения
	по направлению подготовки
	21.03.01 Нефтегазовое дело
	•
	Ф.И.О.
Допущена к защите	Научный руководитель:
«»20г.	таў шын руководитель.
<u> </u>	уч. степень, должность
подпись	Ф.И.О.
	Защита курсового проекта:
	Оценка
	Дата « » 20 г.
	Подпись научного руководителя
	подпись пау того руководители

Чебоксары 20__г.

Образец отзыва научного руководителя ОТЗЫВ РУКОВОДИТЕЛЯ

на курсовой проект

Студент
Кафедра транспортно-энергетические систем
Направление подготовки (специальность) и профиль (специализация)
Наименование темы:
Руководитель:
уч. степень, должность, Ф.И.О.
1. Актуальность темы курсового проекта
2. Соответствие полученных результатов заявленным целям и задачам
3. Характеристика использования в работе исследовательского инструментария (анализа, синтеза, статистико-математической методологии, пакетов прикладных программ и т.п.)
4. Степень самостоятельности при работе над курсовым проектом (самостоятельность изложения и обобщения материала, самостоятельная интерпретация полученных результатов, обоснованность выводов)
5. Оценка оформления проекта в соответствии с требованиями, содержащимися в Методических указаниях по выполнению курсового проекта, разработанных и утвержденных кафедрой
6.Замечания по подготовке и выполнению курсового проекта
7. Курсовой проект соответствует предъявляемым требованиям и может быть рекомендован к защите
8. Оценка
«»202г. /